backward.py 20.2 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Q
Qiao Longfei 已提交
14
from paddle.v2.fluid import framework as framework
F
update  
fengjiayi 已提交
15
from . import core
F
update  
fengjiayi 已提交
16
import collections
17
import copy
18

19 20 21 22
__all__ = [
    'append_backward',
    'calc_gradient',
]
23 24


25 26
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
27
    Traverse all ops in op_descs[begin_idx : end_idx],
28 29
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
30 31 32
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
33
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
34
    for i in range(begin_idx, end_idx):
35
        op_desc = op_descs[i]
F
fengjiayi 已提交
36 37 38 39
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
40 41


F
fengjiayi 已提交
42
def _create_op_desc_(op_type, inputs, outputs, attrs):
43 44 45
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
    for para, args in inputs.iteritems():
        op_desc.set_input(para, args)
    for para, args in outputs.iteritems():
        op_desc.set_output(para, args)
    for name, val in attrs.iteritems():
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


60 61 62 63 64 65
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
    grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
    fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
F
fengjiayi 已提交
66 67 68 69 70 71 72
    if block.desc.has_var_recursive(fwd_name):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
        grad_var.set_dtype(fwd_var.dtype())
    else:
        grad_var.set_dtype(core.DataType.FP32)


F
fengjiayi 已提交
73
def _all_in_set_(cands, s):
74 75 76
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
77 78
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
79 80 81 82 83 84
    for c in cands:
        if not c in s:
            return False
    return True


85 86 87 88 89 90 91 92 93 94 95 96
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
    for c in cands:
        if c in s:
            return True
    return False


F
fengjiayi 已提交
97
def _strip_grad_suffix_(name):
98 99 100 101 102
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
F
fengjiayi 已提交
103 104
    pos = name.find(core.grad_var_suffix())
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
105 106 107


def _append_grad_suffix_(name):
108 109 110 111
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
F
fengjiayi 已提交
112 113 114
    return name + core.grad_var_suffix()


F
fengjiayi 已提交
115
def _addup_repetitive_outputs_(op_descs):
116 117 118 119 120
    """
    In backward part, an variable may be the output of more than one ops.
    In this case, the variable should be the accumulation of all the outputs.
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
121 122
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
123 124
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
125
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
126 127 128 129 130
            if len(renamed_vars[var_name]) > 1:
                pending_sum_ops.append(
                    (_create_op_desc_("sum", {"X": renamed_vars[var_name]},
                                      {"Out": [var_name]}, {}), idx))
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
131
        for var_name in op_desc.output_arg_names():
F
fengjiayi 已提交
132 133 134
            if var_name == core.empty_var_name(
            ) or var_name in op_desc.input_arg_names():
                # empty variable or inplace op
F
fengjiayi 已提交
135
                continue
F
fengjiayi 已提交
136
            if len(renamed_vars[var_name]) == 0:
F
update  
fengjiayi 已提交
137
                # it's the first time we get the variable
F
fengjiayi 已提交
138
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
139
            else:
F
fengjiayi 已提交
140
                if len(renamed_vars[var_name]) == 1:
F
update  
fengjiayi 已提交
141 142
                    new_name = var_name + "@RENAME@" + \
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
143
                    var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
144
                    # rename original var_name
F
fengjiayi 已提交
145 146
                    renamed_vars[var_name][0] = new_name
                    _rename_arg_(op_descs, var_name, new_name, 0, idx)
F
fengjiayi 已提交
147
                    _rename_arg_(pending_sum_ops, var_name, new_name)
F
update  
fengjiayi 已提交
148 149 150

                new_name = var_name + "@RENAME@" + \
                    str(var_rename_count[var_name])
F
fengjiayi 已提交
151
                var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
152
                op_desc.rename_output(var_name, new_name)
F
fengjiayi 已提交
153 154
                renamed_vars[var_name].append(new_name)
    for var_name, inputs in renamed_vars.iteritems():
F
update  
fengjiayi 已提交
155
        if len(inputs) > 1:
F
fengjiayi 已提交
156
            pending_sum_ops.append((_create_op_desc_(
F
fengjiayi 已提交
157
                "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs)))
F
fengjiayi 已提交
158
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
159
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
160 161 162 163 164 165
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
166 167 168 169
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
170
        2. all grad inputs of the grad op are in 'no_grad_set'
171
    """
F
fengjiayi 已提交
172 173

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
174 175
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
176 177 178 179
            return True
        if _all_in_set_(
                filter(lambda name: name.find(core.grad_var_suffix()) != -1,
                       op_desc.input_arg_names()), no_grad_set):
F
fengjiayi 已提交
180
            no_grad_set.union(out_arg_names)
F
fengjiayi 已提交
181 182 183
            return True
        return False

F
fengjiayi 已提交
184 185
    # Remove ops whose outputs are all in no_grad_dict
    op_descs = filter(
F
fengjiayi 已提交
186
        lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
F
fengjiayi 已提交
187 188
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
189
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
190
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
191 192 193
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
194
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
195 196 197 198 199 200

    map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))

    return op_descs


201 202
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
203 204 205 206
                          target_block,
                          no_grad_dict,
                          grad_to_var,
                          callback=None):
207 208 209 210 211
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
212
        ops(Op): the forward operators whose backward ops need to be added
213
        target_block(Block): the block which is going to hold new generated grad ops
214
        no_grad_dict(dict):
215 216 217 218 219
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
220
        callback(callable object): a callable object used to decorate new generated grad ops
221
    """
F
fengjiayi 已提交
222 223
    if callback is None:

F
fix bug  
fengjiayi 已提交
224
        def empty_callback(block, context):
F
fengjiayi 已提交
225 226 227 228
            pass

        callback = empty_callback
    elif not hasattr(callback, '__call__'):
F
fengjiayi 已提交
229
        raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
230

F
fengjiayi 已提交
231
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
232 233
    grad_op_descs = []
    program = block.program
234
    for op in reversed(ops):
F
fengjiayi 已提交
235 236 237 238 239
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
            sub_block = program.block(op.block_attr("sub_block"))
            grad_sub_block = program.create_block(parent_idx=sub_block.idx)
240 241
            _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                  no_grad_dict, grad_to_var)
F
fengjiayi 已提交
242 243
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
244
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
245 246
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
Y
Yang Yu 已提交
247

F
fengjiayi 已提交
248 249 250 251 252 253 254
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
255

F
fengjiayi 已提交
256
    # append op_desc in grad_op_descs to target_block
F
update  
fengjiayi 已提交
257
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
258 259
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
F
fengjiayi 已提交
260
        callback(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
261

F
fengjiayi 已提交
262 263

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
264 265 266 267 268 269 270 271 272 273 274 275
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
276
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
277
    """
F
fengjiayi 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
            sub_block = block.program.block(op_desc.block_attr("sub_block"))
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
            grad_var_name = grad_var_name.encode("ascii")
            if block.desc.has_var_recursive(
                    grad_var_name) or grad_var_name == core.empty_var_name():
                continue
            block.desc.var(grad_var_name)
            new_vars.add(grad_var_name)
            if not grad_to_var.has_key(grad_var_name):
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
301 302


303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
                new_name = "%s_%s" % (name, core.unique_integer(name))
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

    for g, ng in var_map.iteritems():
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
        for var in block.vars.itervalues():
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


F
fengjiayi 已提交
337
def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
338
    """
F
fengjiayi 已提交
339 340 341 342
    Append backward part to main_program

    Args:
        loss(Variable): The variable generated by cost function.
343 344
        parameter_list(list[string]): Parameters that need to be updated by
            optimizer. If None, it means all parameters need to be updated.
345
        no_grad_set(set): Variables that have no gradients in Block 0.
346 347
            All variables with `step_gradient=True` from all blocks will be
            automatically added.
F
fengjiayi 已提交
348 349

    Return:
350
        (list[(Variable,Variable)]): list of (parameter, gradient) pair.
351 352
    """
    assert isinstance(loss, framework.Variable)
Y
Yu Yang 已提交
353

F
fengjiayi 已提交
354
    program = loss.block.program
F
fengjiayi 已提交
355
    if no_grad_set is None:
356 357 358 359
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
Y
Yu Yang 已提交
360

F
update  
fengjiayi 已提交
361
    grad_info_map = dict()
F
fengjiayi 已提交
362
    root_block = program.block(0)
F
fengjiayi 已提交
363

F
fengjiayi 已提交
364 365
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
366 367
    grad_to_var = dict()

368 369 370 371 372 373 374 375 376 377 378 379
    op_desc = _create_op_desc_("fill_constant", {}, {
        "Out": [_append_grad_suffix_(loss.name)]
    }, {"shape": [1],
        "value": 1.0,
        "dtype": loss.dtype})
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
F
fengjiayi 已提交
380
                          grad_to_var, callback)
381 382 383 384 385 386

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
387
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
388

F
fengjiayi 已提交
389 390
    program.current_block_idx = current_block_idx
    program.sync_with_cpp()
F
fengjiayi 已提交
391

392 393 394
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
395
        params = program.global_block().all_parameters()
396
        parameters = [param.name for param in params]
397

398 399
    params_and_grads = []
    for param in parameters:
F
update  
fengjiayi 已提交
400
        if param not in grad_info_map:
401
            raise ValueError("param %s is not in map" % param)
F
update  
fengjiayi 已提交
402
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
403
        grad_block = grad_info[1]
404 405 406 407
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
408
        param_var = program.global_block().var(param)
409 410 411 412 413 414
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
    return params_and_grads
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
    prog.sync_with_cpp()

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars