heter_wrapper.cc 11.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#ifdef PADDLE_WITH_PSLIB
31
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

namespace paddle {
namespace framework {

std::shared_ptr<HeterWrapper> HeterWrapper::s_instance_ = NULL;
bool HeterWrapper::is_initialized_ = false;

void HeterWrapper::CreateClient2XpuConnection() {
  brpc::ChannelOptions options;
  options.protocol = "baidu_std";
  options.connection_type = "single";
  options.timeout_ms = 2000000;

  xpu_channels_.resize(xpu_list_.size());
  for (size_t i = 0; i < xpu_list_.size(); ++i) {
    VLOG(3) << "channel init: " << xpu_list_[i];
    xpu_channels_[i].reset(new brpc::Channel());
    if (xpu_channels_[i]->Init(xpu_list_[i].c_str(), "", &options) != 0) {
      VLOG(0) << "server channel init fail";
    }
  }
}

void HeterWrapper::RegisterServiceHandler(int cmd, HeterServiceHandler func) {
  service_.RegisterServiceHandler(cmd, func);
}

void HeterWrapper::SetXpuList(const std::vector<std::string>& xpu_list) {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to set xpu list";
  for (auto& x : xpu_list) {
    xpu_list_.push_back(x);
    VLOG(3) << "set xpu list:  " << x << " size: " << xpu_list_.size();
  }
#endif
}

void HeterWrapper::StartXpuService(const std::string& ip, uint32_t port) {
  std::string ip_port = ip + ":" + std::to_string(port);
  VLOG(3) << "xpu server starts at " << ip_port;

  server_.AddService(&service_, brpc::SERVER_DOESNT_OWN_SERVICE);
  brpc::ServerOptions options;
  if (server_.Start(ip_port.c_str(), &options) != 0) {
    VLOG(0) << "xpu server start fail";
  }
}

// void HeterWrapper::SerializeToReq(const std::string& varname,
// Scope* scope, HeterRequest& request) {
//  auto* req_var = request.mutable_vars();

void HeterWrapper::SerializeToReq(const std::string& varname, Scope* scope,
                                  VariableMessage* req_var) {
  Variable* var = scope->FindVar(varname);
  if (var == nullptr) {
    return;
  }
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  req_var->set_varname(varname);
  req_var->set_type(LOD_TENSOR);
  req_var->set_data_type(static_cast<VariableMessage::Type>(tensor->type()));

  for (auto& dim : framework::vectorize(tensor->dims())) {
    req_var->add_dims(dim);
  }
  const framework::LoD lod = tensor->lod();
  if (lod.size() > 0) {
    req_var->set_lod_level(lod.size());
    for (auto& each : lod) {
      VariableMessage::LodData* lod_inner = req_var->add_lod();
      for (auto& d : each) {
        lod_inner->add_lod_data(d);
      }
    }
  }

  auto* req_data = req_var->mutable_data();
  req_data->clear();
  req_data->resize(tensor->numel() * SizeOfType(tensor->type()));
  char* data_ptr = const_cast<char*>(req_data->data());

  if (platform::is_cpu_place(tensor->place())) {
    memcpy(data_ptr, tensor->data<void>(),
           tensor->numel() * SizeOfType(tensor->type()));
W
wanghuancoder 已提交
117
  } else {
118
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
119 120 121 122 123
    memory::Copy(platform::CPUPlace(), data_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, tensor->place()),
                 tensor->data<void>(),
                 tensor->numel() * SizeOfType(tensor->type()), nullptr);
#endif
T
Thunderbrook 已提交
124 125 126 127 128 129 130
#ifdef PADDLE_WITH_XPU
    memory::Copy(platform::CPUPlace(), data_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, tensor->place()),
                 tensor->data<void>(),
                 tensor->numel() * SizeOfType(tensor->type()));
#endif
  }
T
Thunderbrook 已提交
131 132
}

133
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
134 135 136
void HeterWrapper::DeSerializeToTensor(Scope* scope,
                                       const VariableMessage& req_var,
                                       platform::Place place,
137
                                       gpuStream_t stream) {
T
Thunderbrook 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  // const VariableMessage& req_var = request->vars();
  auto* var = scope->FindVar(req_var.varname());
  auto* tensor = var->GetMutable<LoDTensor>();

  std::vector<int> vec_dim;
  for (auto& x : req_var.dims()) {
    vec_dim.push_back(x);
  }
  tensor->Resize(make_ddim(vec_dim));

  LoD lod;
  for (int i = 0; i < req_var.lod_level(); ++i) {
    framework::Vector<size_t> v;
    for (int j = 0; j < req_var.lod(i).lod_data_size(); ++j) {
      v.push_back(req_var.lod(i).lod_data(j));
    }
    lod.push_back(v);
  }
  tensor->set_lod(lod);

  void* tensor_data =
      tensor->mutable_data(place, ToVarType(req_var.data_type()));

161
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
162 163 164
  memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), tensor_data,
               platform::CPUPlace(), req_var.data().data(),
               tensor->numel() * SizeOfType(tensor->type()), stream);
T
Thunderbrook 已提交
165
#else
T
Thunderbrook 已提交
166 167 168 169 170 171 172 173
  memcpy(tensor_data, req_var.data().data(),
         tensor->numel() * SizeOfType(tensor->type()));
#endif
}
#endif

// void HeterWrapper::DeSerializeToTensor(Scope* scope,
// const HeterRequest* request) {
T
Thunderbrook 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void HeterWrapper::DeSerializeToTensor(Scope* scope,
                                       const VariableMessage& req_var,
                                       platform::Place place) {
  // const VariableMessage& req_var = request->vars();
  auto* var = scope->FindVar(req_var.varname());
  auto* tensor = var->GetMutable<LoDTensor>();

  std::vector<int> vec_dim;
  for (auto& x : req_var.dims()) {
    vec_dim.push_back(x);
  }
  tensor->Resize(make_ddim(vec_dim));

  LoD lod;
  for (int i = 0; i < req_var.lod_level(); ++i) {
    framework::Vector<size_t> v;
    for (int j = 0; j < req_var.lod(i).lod_data_size(); ++j) {
      v.push_back(req_var.lod(i).lod_data(j));
    }
    lod.push_back(v);
  }
  tensor->set_lod(lod);

  void* tensor_data =
      tensor->mutable_data(place, ToVarType(req_var.data_type()));

T
Thunderbrook 已提交
200 201
#ifdef PADDLE_WITH_XPU
  memory::Copy(BOOST_GET_CONST(platform::XPUPlace, place), tensor_data,
T
Thunderbrook 已提交
202
               platform::CPUPlace(), req_var.data().data(),
T
Thunderbrook 已提交
203
               tensor->numel() * SizeOfType(tensor->type()));
T
Thunderbrook 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
#else
  memcpy(tensor_data, req_var.data().data(),
         tensor->numel() * SizeOfType(tensor->type()));
#endif
}

framework::proto::VarType::Type HeterWrapper::ToVarType(
    VariableMessage::Type type) {
  switch (type) {
    case VariableMessage::FP32:
      return framework::proto::VarType::FP32;  // NOLINT
    case VariableMessage::FP64:
      return framework::proto::VarType::FP64;  // NOLINT
    case VariableMessage::INT32:
      return framework::proto::VarType::INT32;  // NOLINT
    case VariableMessage::INT64:
      return framework::proto::VarType::INT64;  // NOLINT
    case VariableMessage::BOOL:
      return framework::proto::VarType::BOOL;  // NOLINT
    default:
T
Thunderbrook 已提交
224 225
      PADDLE_THROW(platform::errors::InvalidArgument(
          "ToVarType:Unsupported type %d", type));
T
Thunderbrook 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  }
}

void HeterWrapper::StopXpuService(int num) {
  HeterRequest request;
  HeterResponse response;
  brpc::Controller cntl;
  request.set_cmd(2);
  // for (size_t i = 0; i < xpu_channels_.size(); ++i) {
  HeterService_Stub stub(xpu_channels_[num].get());
  stub.service(&cntl, &request, &response, NULL);
  if (cntl.Failed()) {
    VLOG(0) << "call stop xpu service fail: " << cntl.ErrorText();
  } else {
    VLOG(3) << "call stop xpu service success";
  }
  // }
}

void HeterWrapper::EndPass(Scope* scope, int num) {
  HeterRequest request;
  HeterResponse response;
  brpc::Controller cntl;
  request.set_cmd(1);
  // for (size_t i = 0; i < xpu_channels_.size(); ++i) {
  HeterService_Stub stub(xpu_channels_[num].get());
  stub.service(&cntl, &request, &response, NULL);
  if (cntl.Failed()) {
    VLOG(0) << "call end pass fail: " << cntl.ErrorText();
  } else {
    VLOG(3) << "call end pass success";
    for (int j = 0; j < response.vars_size(); ++j) {
      DeSerializeToTensor(scope, response.vars(j), platform::CPUPlace());
    }
  }
  // }
}

void HeterWrapper::CallRemoteXpu(std::shared_ptr<HeterTask> task,
                                 HeterCpuWorker* worker, int mpi_rank,
                                 std::vector<std::string>& send_vars) {
  HeterRequest request;
  request.set_cmd(0);
  request.set_cur_batch(task->cur_batch_);

  OnHeterRpcDone* done = new OnHeterRpcDone([this, task, worker](void* done) {
W
wanghuancoder 已提交
272
    auto* closure = reinterpret_cast<OnHeterRpcDone*>(done);
T
Thunderbrook 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    if (closure->cntl.Failed()) {
      VLOG(0) << "call xpu fail: " << closure->cntl.ErrorText();
    } else {
      VLOG(3) << "call xpu success";
    }
    // DeSerializeToTensor(task->scope_,
    // closure->response.vars(), platform::CPUPlace());
    for (int i = 0; i < closure->response.vars_size(); ++i) {
      DeSerializeToTensor(task->scope_, closure->response.vars(i),
                          platform::CPUPlace());
    }

    worker->Schedule(task->taskid_);
  });

  //  std::vector<std::string> varnames = {"click", "12345"};
  //  //varnames.push_back(send_var);
  //  //if (send_var == "_generated_var_412") {
  //  varnames.push_back("filter_by_instag_0.tmp_0");
  //  varnames.push_back("filter_by_instag_2.tmp_0");
  //  varnames.push_back("filter_by_instag_0.tmp_1");
  //  varnames.push_back("concat_1.tmp_0");
  // }
  for (auto& varname : send_vars) {
    auto* req_var = request.add_vars();
    SerializeToReq(varname, task->scope_, req_var);
  }

  int num = mpi_rank % xpu_channels_.size();
  HeterService_Stub stub(xpu_channels_[num].get());
  // stub.service(&cntl, &request, &response,
  // brpc::NewCallback(&HeterWrapper::RpcCallBack,
  // response, cntl, worker, task));
  stub.service(&done->cntl, &request, &done->response, done);
}

void HeterWrapper::CallRemoteXpuSync(std::shared_ptr<HeterTask> task,
                                     HeterCpuWorker* worker, int mpi_rank,
                                     std::vector<std::string>& send_vars) {
  HeterRequest request;
  HeterResponse response;
  brpc::Controller cntl;
  request.set_cmd(0);
  request.set_cur_batch(task->cur_batch_);

  // std::vector<std::string> varnames = {"concat_1.tmp_0", "click", "12345"};
  for (auto& varname : send_vars) {
    auto* req_var = request.add_vars();
    SerializeToReq(varname, task->scope_, req_var);
  }

  HeterService_Stub stub(xpu_channels_[0].get());
  stub.service(&cntl, &request, &response, NULL);
  if (cntl.Failed()) {
    VLOG(0) << "call xpu fail: " << cntl.ErrorText();
  } else {
    VLOG(3) << "call xpu success";
    for (int i = 0; i < response.vars_size(); ++i) {
      DeSerializeToTensor(task->scope_, response.vars(i), platform::CPUPlace());
    }
  }
}

}  // end namespace framework
}  // end namespace paddle
#endif