sparse_weight_embedding_grad_kernel.cc 8.1 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse_weight_embedding_grad_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"

namespace phi {

template <typename T, typename Context>
struct SparseWeightEmbeddingGradCPUFunctor {
  SparseWeightEmbeddingGradCPUFunctor(const Context& dev_ctx,
                                      const DenseTensor& input,
                                      const SelectedRows& weight,
                                      const DenseTensor& out_grad,
                                      int64_t padding_idx,
                                      DenseTensor* weight_grad)
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_grad_(out_grad),
        weight_grad_(weight_grad),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    DDim table_dim = weight_.dims();

    auto ids = CopyIdsToVector<IdT, int64_t>(input_);
    auto ids_num = static_cast<int64_t>(ids.size());

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    {
      auto* d_output = &out_grad_;
      // auto d_table = weight_grad_;
      auto* ids_data = ids.data();

      int64_t N = table_dim[0];
      int64_t D = table_dim[1];

      auto* d_output_data = d_output->template data<T>();

      dev_ctx_.template Alloc<T>(weight_grad_);
      auto* d_table_data = weight_grad_->data<T>();

      memset(d_table_data, 0, weight_grad_->numel() * sizeof(T));

      for (int64_t i = 0; i < ids_num; ++i) {
        if (padding_idx_ != kNoPadding && ids_data[i] == padding_idx_) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
          PADDLE_ENFORCE_LT(
              ids_data[i],
              N,
              phi::errors::InvalidArgument(
                  "Variable value (input) of "
                  "OP(paddle.nn.functional.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N,
                  ids_data[i]));
          PADDLE_ENFORCE_GE(
              ids_data[i],
              0,
              phi::errors::InvalidArgument(
                  "Variable value (input) of "
                  "OP(paddle.nn.functional.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N,
                  ids_data[i]));
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
        }
      }
    }
  }

 private:
  const Context& dev_ctx_;
  const DenseTensor& input_;
  const SelectedRows& weight_;
  const DenseTensor& out_grad_;
  DenseTensor* weight_grad_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
struct SparseWeightEmbeddingSparseGradCPUFunctor {
  SparseWeightEmbeddingSparseGradCPUFunctor(const Context& dev_ctx,
                                            const DenseTensor& input,
                                            const SelectedRows& weight,
                                            const DenseTensor& out_grad,
                                            int64_t padding_idx,
                                            SelectedRows* weight_grad)
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_grad_(out_grad),
        weight_grad_(weight_grad),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    DDim table_dim = weight_.dims();

    auto ids = CopyIdsToVector<IdT, int64_t>(input_);
    auto ids_num = static_cast<int64_t>(ids.size());

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    auto* d_table = weight_grad_;
    auto* d_output = &out_grad_;
    d_table->set_rows(ids);

    auto* d_table_value = d_table->mutable_value();
    d_table_value->Resize({ids_num, table_dim[1]});

    dev_ctx_.template Alloc<T>(d_table_value);

    d_table->set_height(table_dim[0]);

    auto* d_output_data = d_output->template data<T>();
    auto* d_table_data = d_table_value->template data<T>();

    auto d_output_dims = d_output->dims();
    auto d_output_dims_2d =
        phi::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
    PADDLE_ENFORCE_EQ(d_table_value->dims(),
                      d_output_dims_2d,
                      phi::errors::InvalidArgument(
                          "ShapeError: The shape of lookup_table@Grad and "
                          "output@Grad should be same. "
                          "But received lookup_table@Grad's shape = [%s], "
                          "output@Grad's shape = [%s].",
                          d_table_value->dims(),
                          d_output_dims_2d));
    memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
  }

 private:
  const Context& dev_ctx_;
  const DenseTensor& input_;
  const SelectedRows& weight_;
  const DenseTensor& out_grad_;
  SelectedRows* weight_grad_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void SparseWeightEmbeddingGradKernel(const Context& ctx,
                                     const DenseTensor& input,
                                     const SelectedRows& weight,
                                     const DenseTensor& out_grad,
                                     int64_t padding_idx,
                                     DenseTensor* weight_grad) {
  SparseWeightEmbeddingGradCPUFunctor<T, Context> functor(
      ctx, input, weight, out_grad, padding_idx, weight_grad);

  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "emebdding input only support int32 and int64"));
  }
}

template <typename T, typename Context>
void SparseWeightEmbeddingSparseGradKernel(const Context& ctx,
                                           const DenseTensor& input,
                                           const SelectedRows& weight,
                                           const DenseTensor& out_grad,
                                           int64_t padding_idx,
                                           SelectedRows* weight_grad) {
  SparseWeightEmbeddingSparseGradCPUFunctor<T, Context> functor(
      ctx, input, weight, out_grad, padding_idx, weight_grad);

  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "emebdding input only support int32 and int64"));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(sparse_weight_embedding_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::SparseWeightEmbeddingGradKernel,
                   float,
                   double,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(sparse_weight_embedding_sparse_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::SparseWeightEmbeddingSparseGradKernel,
                   float,
                   double,
                   phi::dtype::bfloat16) {}