average.py 2.2 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
D
dzhwinter 已提交
16
import warnings
F
fengjiayi 已提交
17 18 19 20 21 22 23 24 25
"""
    Class of all kinds of Average.

    All Averages are accomplished via Python totally. 
    They do not change Paddle's Program, nor do anything to
    modify NN model's configuration. They are completely 
    wrappers of Python functions.
"""

D
dzhwinter 已提交
26 27
__all__ = ["WeightedAverage"]

F
fengjiayi 已提交
28 29 30 31 32 33 34 35 36 37 38 39

def _is_number_(var):
    return isinstance(var, int) or isinstance(var, float) or (isinstance(
        var, np.ndarray) and var.shape == (1, ))


def _is_number_or_matrix_(var):
    return _is_number_(var) or isinstance(var, np.ndarray)


class WeightedAverage(object):
    def __init__(self):
D
dzhwinter 已提交
40 41 42
        warnings.warn(
            "The %s is deprecated, please use fluid.metrics.Accuracy instead." %
            (self.__class__.__name__), Warning)
F
fengjiayi 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self.reset()

    def reset(self):
        self.numerator = None
        self.denominator = None

    def add(self, value, weight):
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")

        if self.numerator is None or self.denominator is None:
            self.numerator = value * weight
            self.denominator = weight
        else:
            self.numerator += value * weight
            self.denominator += weight

    def eval(self):
        if self.numerator is None or self.denominator is None:
            raise ValueError(
                "There is no data to be averaged in WeightedAverage.")
        return self.numerator / self.denominator