tensor_array_read_write_op.cc 7.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
Y
Yang Yu 已提交
14
#include "paddle/operators/array_operator.h"
Y
Yang Yang(Tony) 已提交
15
#include "paddle/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
16 17 18
namespace paddle {
namespace operators {

Y
Yang Yu 已提交
19
class WriteToArrayOp : public ArrayOp {
Y
Yu Yang 已提交
20 21 22 23 24
 public:
  WriteToArrayOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
25
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
26 27 28 29

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
30
    if (x == nullptr) return;
Y
Yu Yang 已提交
31 32 33 34 35
    auto &x_tensor = x->Get<framework::LoDTensor>();
    size_t offset = GetOffset(scope, dev_ctx);
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
    if (offset >= out->size()) {
Y
Yang Yang(Tony) 已提交
36 37
      VLOG(10) << "Resize " << Output("Out") << " from " << out->size()
               << " to " << offset + 1;
Y
Yu Yang 已提交
38 39
      out->resize(offset + 1);
    }
40 41 42 43 44 45 46 47 48
    if (x_tensor.memory_size() > 0) {
      auto *out_tensor = &out->at(offset);
      CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx, out_tensor);
      out_tensor->set_lod(x_tensor.lod());
    } else {
      VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                  "nothing has been written to output array["
               << offset << "].";
    }
Y
Yu Yang 已提交
49 50 51 52 53
  }
};

class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
54
  WriteToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
55 56 57 58 59 60 61
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(LoDTensor) the tensor will be written to tensor array");
    AddInput(
        "I",
        "(Tensor) the subscript index in tensor array. The number of element "
        "should be 1");
    AddOutput("Out", "(TensorArray) the tensor array will be written");
62 63
    AddComment(R"DOC(
WriteToArray Operator.
Y
Yu Yang 已提交
64

65 66 67
This operator writes a LoDTensor to a LoDTensor array.

Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The
Y
Yu Yang 已提交
68 69
equation is

70 71
$$A[i] = T$$

Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80 81
)DOC");
  }
};

class WriteToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index");
    PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1,
                      "The number of element of subscript index must be 1");
82 83 84
    if (!context->HasInput("X")) {
      return;
    }
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError());
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }

 protected:
  virtual const char *NotHasXError() const { return "Must set the lod tensor"; }

  virtual const char *NotHasOutError() const {
    return "Must set the lod tensor array";
  }
};

class WriteToArrayInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind &op_desc,
                  framework::BlockDescBind *block) const override {
Y
Yang Yang(Tony) 已提交
101 102 103 104 105
    auto x_name = op_desc.Input("X")[0];
    auto out_name = op_desc.Output("Out")[0];
    VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY";
    auto &out = detail::Ref(block->FindRecursiveOrCreateVar(out_name),
                            "Cannot found %s", out_name);
106
    out.SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY);
107 108 109 110
    auto *x = block->FindVarRecursive(x_name);
    if (x != nullptr) {
      out.SetDataType(x->GetDataType());
    }
Y
Yu Yang 已提交
111 112 113
  }
};

Y
Yang Yu 已提交
114
class ReadFromArrayOp : public ArrayOp {
Y
Yu Yang 已提交
115 116 117 118 119
 public:
  ReadFromArrayOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
120
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
121 122 123 124 125 126 127
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_array = x->Get<framework::LoDTensorArray>();
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(out != nullptr, "Out must be set");
Y
Yang Yang(Tony) 已提交
128
    auto *out_tensor = out->GetMutable<framework::LoDTensor>();
Y
Yu Yang 已提交
129
    size_t offset = GetOffset(scope, dev_ctx);
130 131 132 133 134 135 136
    if (offset < x_array.size()) {
      framework::CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx,
                          out_tensor);
      out_tensor->set_lod(x_array[offset].lod());
    } else {
      VLOG(10) << "offset " << offset << " >= " << x_array.size();
    }
Y
Yu Yang 已提交
137 138 139 140 141
  }
};

class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
142
  ReadFromArrayProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
143 144 145 146 147 148
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(TensorArray) the array will be read from.");
    AddInput("I",
             "(Tensor) the subscript index in tensor array. The number of "
             "element should be 1");
    AddOutput("Out", "(LoDTensor) the tensor will be read from.");
149 150
    AddComment(R"DOC(
ReadFromArray Operator.
Y
Yu Yang 已提交
151

152 153 154
Read a LoDTensor from a LoDTensor Array.

Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The
Y
Yu Yang 已提交
155 156
equation is

157 158
$$T = A[i]$$

Y
Yu Yang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
)DOC");
  }
};

class ReadFromArrayInferShape : public WriteToArrayInferShape {
 protected:
  const char *NotHasXError() const override {
    return "The input array X must be set";
  }
  const char *NotHasOutError() const override {
    return "The output tensor out must be set";
  }
};

class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("read_from_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("write_to_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(write_to_array, ops::WriteToArrayOp,
                  ops::WriteToArrayInferShape, ops::WriteToArrayOpProtoMaker,
                  ops::WriteToArrayGradMaker, ops::WriteToArrayInferVarType);
REGISTER_OPERATOR(read_from_array, ops::ReadFromArrayOp,
                  ops::ReadFromArrayInferShape, ops::ReadFromArrayProtoMaker,
                  ops::ReadFromArrayGradMaker);