context.h 7.8 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
S
superjomn 已提交
16

17
#include "paddle/fluid/lite/utils/any.h"
S
superjomn 已提交
18
#ifdef LITE_WITH_CUDA
Y
Yan Chunwei 已提交
19
#include "paddle/fluid/lite/cuda/blas.h"
S
superjomn 已提交
20 21
#include "paddle/fluid/lite/cuda/cuda_utils.h"
#endif
Y
Yan Chunwei 已提交
22 23 24 25
#ifdef LITE_WITH_X86
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device_context.h"
#endif
26
#include <map>
S
superjomn 已提交
27
#include <memory>
S
superjomn 已提交
28
#include <set>
29 30
#include <string>
#include <utility>
S
superjomn 已提交
31
#include <vector>
T
tensor-tang 已提交
32 33
#include "paddle/fluid/lite/core/cpu_info.h"
#include "paddle/fluid/lite/core/lite_tensor.h"
S
superjomn 已提交
34
#include "paddle/fluid/lite/core/target_wrapper.h"
35
#include "paddle/fluid/lite/utils/all.h"
S
superjomn 已提交
36 37 38 39

namespace paddle {
namespace lite {

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <TargetType Type>
class Context;

using HostContext = Context<TargetType::kHost>;
using X86Context = Context<TargetType::kX86>;
using CUDAContext = Context<TargetType::kCUDA>;
using ARMContext = Context<TargetType::kARM>;

template <>
class Context<TargetType::kHost> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopyShared(const HostContext* ctx) {}

  std::string name() const { return "HostContext"; }
};
58 59

#ifdef LITE_WITH_ARM
T
tensor-tang 已提交
60

61 62
template <>
class Context<TargetType::kARM> {
T
tensor-tang 已提交
63
 public:
64 65 66
  Context();
  Context(PowerMode mode, int threads);
  explicit Context(const ARMContext& ctx);
T
tensor-tang 已提交
67 68 69

  ARMContext& operator=(const ARMContext& ctx);

70 71 72 73 74
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { DeviceInfo::Init(); }

  void CopyShared(const ARMContext* ctx) {}

T
tensor-tang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  void SetRunMode(PowerMode mode, int threads);
  void SetCache(int l1size, int l2size, int l3size);
  void SetArch(ARMArch arch);
  void BindDev();

  PowerMode mode() const;
  int threads() const;
  ARMArch arch() const;

  template <typename T>
  T* workspace_data() {
    return workspace_.mutable_data<T>();
  }

  int l1_cache_size() const;
  int l2_cache_size() const;
  int l3_cache_size() const;
  bool ExtendWorkspace(DDimLite dims);

94 95
  std::string name() const { return "ARMContext"; }

T
tensor-tang 已提交
96 97 98 99 100 101 102 103 104 105
 private:
  // LITE_POWER_HIGH stands for using big cores,
  // LITE_POWER_LOW stands for using small core,
  // LITE_POWER_FULL stands for using all cores
  ARMArch arch_;
  PowerMode mode_;
  std::vector<int> active_ids_;
  TensorLite workspace_;
  int64_t count_{0};
};
106 107
#endif

S
superjomn 已提交
108 109
#ifdef LITE_WITH_CUDA
// Only works with CUDA kernels.
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
template <>
class Context<TargetType::kCUDA> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {
    cublas_fp32_ = std::make_shared<lite::cuda::Blas<float>>();
  }

  void CopyShared(const CUDAContext* ctx) {
    CHECK(ctx);
    CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
    ctx->cublas_fp32_ = cublas_fp32_;
  }

  const cudaStream_t exec_stream() { return exec_stream_; }
  void SetExecStream(cudaStream_t stream) { exec_stream_ = stream; }

  const cudaStream_t io_stream() { return io_stream_; }
  void SetIoStream(cudaStream_t stream) { io_stream_ = stream; }

  std::shared_ptr<cuda::Blas<float>> cublas_fp32() { return cublas_fp32_; }
  void SetCuBlasFP32(std::shared_ptr<cuda::Blas<float>> cublas_fp32) {
    cublas_fp32_ = cublas_fp32;
  }

  const std::vector<cudaEvent_t>& input_events() { return input_events_; }
  void SetInputEvents(const std::vector<cudaEvent_t>& input_events) {
    input_events_.clear();
    input_events_.assign(input_events.begin(), input_events.end());
  }

  const std::vector<cudaEvent_t>& output_events() { return output_events_; }
  void SetOutputEvents(const std::vector<cudaEvent_t>& output_events) {
    output_events_.clear();
    output_events_.assign(output_events.begin(), output_events.end());
  }

  std::string name() const { return "CUDAContext"; }

 private:
S
superjomn 已提交
150
  // overall information
151 152
  cudaStream_t exec_stream_;
  cudaStream_t io_stream_;
S
superjomn 已提交
153 154

  // not thread-safe, should allocate for each thread.
155
  std::shared_ptr<cuda::Blas<float>> cublas_fp32_;
S
superjomn 已提交
156 157

  // kernel information
158 159
  std::vector<cudaEvent_t> input_events_;
  std::vector<cudaEvent_t> output_events_;
S
superjomn 已提交
160 161 162 163
};
#endif

#ifdef LITE_WITH_X86
164 165 166 167 168 169 170 171 172 173 174 175
template <>
class Context<TargetType::kX86> {
 public:
  using device_ctx_t = ::paddle::platform::CPUDeviceContext;
  using execution_ctx_t = ::paddle::framework::ExecutionContext;

  Context() {
    x86_device_context_.reset(new ::paddle::platform::CPUDeviceContext);
    x86_execution_context_.reset(
        new ::paddle::framework::ExecutionContext(*x86_device_context_));
  }

176 177 178 179 180
  Context(Context&& ctx) {
    x86_device_context_ = std::move(ctx.x86_device_context_);
    x86_execution_context_ = std::move(ctx.x86_execution_context_);
  }

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopyShared(const X86Context* ctx) {}

  const device_ctx_t* x86_device_context() { return x86_device_context_.get(); }
  void SetX86DeviceContext(std::unique_ptr<device_ctx_t>&& ctx) {
    x86_device_context_ = std::move(ctx);
  }

  const execution_ctx_t* x86_execution_context() {
    return x86_execution_context_.get();
  }
  void SetX86ExecutionContext(std::unique_ptr<execution_ctx_t>&& ctx) {
    x86_execution_context_ = std::move(ctx);
196
  }
197 198 199 200 201 202

  std::string name() const { return "X86Context"; }

 private:
  // overall information
  //
S
superjomn 已提交
203
  // kernel information
Y
Yan Chunwei 已提交
204 205

  // legacy info.
206 207
  std::unique_ptr<device_ctx_t> x86_device_context_;
  std::unique_ptr<execution_ctx_t> x86_execution_context_;
S
superjomn 已提交
208 209 210 211 212 213 214
};
#endif

// Context for running a kernel.
// Holds the necessary resource and information.
class KernelContext {
 public:
215 216 217 218
  template <typename ContextT>
  ContextT& As() {
    if (!ctx_.valid()) {
      ctx_.set<ContextT>();
219
    }
220
    return *ctx_.get_mutable<ContextT>();
221 222 223
  }

 private:
224
  Any ctx_;
S
superjomn 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
// The ContextScheduler helps to assign different context for each kernel.
class ContextScheduler {
 public:
  static ContextScheduler& Global() {
    static auto* x = new ContextScheduler;
    return *x;
  }

  std::unique_ptr<KernelContext> NewContext(TargetType target) {
    std::unique_ptr<KernelContext> ctx(new KernelContext);
    switch (target) {
      case TARGET(kHost):
        kernel_contexts_[TargetType::kHost].As<HostContext>().CopyShared(
            &ctx->As<HostContext>());
        break;
#ifdef LITE_WITH_X86
      case TARGET(kX86):
        kernel_contexts_[TargetType::kX86].As<X86Context>().CopyShared(
            &ctx->As<X86Context>());
        break;
#endif
#ifdef LITE_WITH_CUDA
      case TARGET(kCUDA):
        kernel_contexts_[TargetType::kCUDA].As<CUDAContext>().CopyShared(
            &ctx->As<CUDAContext>());
        break;
#endif
#ifdef LITE_WITH_ARM
      case TARGET(kARM):
        kernel_contexts_[TargetType::kARM].As<ARMContext>().CopyShared(
            &ctx->As<ARMContext>());
        break;
#endif
      default:
        LOG(FATAL) << "unsupported target " << TargetToStr(target);
    }
    return ctx;
  }

 private:
  template <TargetType Type, typename ContextT>
  void InitContext() {
    kernel_contexts_[Type].As<ContextT>().InitOnce();
  }

  ContextScheduler() {
    InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
    InitContext<TargetType::kX86, X86Context>();
#endif
#ifdef LITE_WITH_CUDA
    InitContext<TargetType::kCUDA, CUDAContext>();
#endif
#ifdef LITE_WITH_ARM
    InitContext<TargetType::kARM, ARMContext>();
#endif
  }

 private:
  std::map<TargetType, KernelContext> kernel_contexts_;
};

S
superjomn 已提交
289 290
}  // namespace lite
}  // namespace paddle