crf_decoding_op.h 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
Cao Ying 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
16
#include <limits>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/operators/jit/kernels.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/math_function.h"
C
Cao Ying 已提交
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using framework::LoDTensor;
using framework::LoD;
using framework::Tensor;

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
C
Cao Ying 已提交
30 31 32 33 34 35 36 37
class CRFDecodingOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* decoded_path = ctx.Output<Tensor>("ViterbiPath");

Q
Qiao Longfei 已提交
38
    int64_t* path = decoded_path->mutable_data<int64_t>(platform::CPUPlace());
Q
QI JUN 已提交
39 40
    math::SetConstant<DeviceContext, int64_t>()(
        ctx.template device_context<DeviceContext>(), decoded_path, 0);
C
Cao Ying 已提交
41

42 43 44 45 46 47 48
    bool has_length = ctx.HasInput("Length");
    if (has_length) {
      auto* length = ctx.Input<Tensor>("Length");
      const size_t seq_num = length->numel();
      const int64_t* length_data = length->data<int64_t>();
      auto in_dims = emission_weights->dims();

49
      Tensor emission_weights_tmp = *emission_weights;
50 51 52 53 54
      emission_weights_tmp.Resize({in_dims[0] * in_dims[1], in_dims[2]});

      decoded_path->Resize({in_dims[0] * in_dims[1], 1});
      for (size_t i = 0; i < seq_num; ++i) {
        if (length_data[i] == 0) continue;
55 56
        int64_t start_pos = i * in_dims[1];
        int64_t end_pos = start_pos + static_cast<int64_t>(length_data[i]);
57 58 59 60 61
        Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
        Decode(emission_weights_tmp.Slice(start_pos, end_pos),
               *transition_weights, &decoded_path_one_seq);
      }
      decoded_path->Resize({in_dims[0], in_dims[1]});
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

      if (label) {
        const int64_t* label_value = label->data<int64_t>();
        for (size_t i = 0; i < seq_num; ++i) {
          for (int64_t j = 0; j < in_dims[1]; ++j) {
            int64_t start_pos = i * in_dims[1];
            if (j < length_data[i]) {
              path[start_pos + j] =
                  label_value[start_pos + j] == path[start_pos + j] ? 1 : 0;
            } else {
              path[start_pos + j] = 0;
            }
          }
        }
      }
77 78 79 80 81 82 83 84 85 86
    } else {
      PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                        "The Input(Emission) should be a sequence.");
      auto lod = emission_weights->lod();
      PADDLE_ENFORCE_GT(lod.size(), 0, "Input(Emission) must be a sequence.");
      const size_t level = 0;
      const size_t seq_num = lod[level].size() - 1;

      for (size_t i = 0; i < seq_num; ++i) {
        if (lod[level][i] == lod[level][i + 1]) continue;
87 88
        int64_t start_pos = static_cast<int64_t>(lod[level][i]);
        int64_t end_pos = static_cast<int64_t>(lod[level][i + 1]);
89 90 91 92
        Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
        Decode(emission_weights->Slice(start_pos, end_pos), *transition_weights,
               &decoded_path_one_seq);
      }
93
      if (label) {
94 95
        PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                          "The Input(Label) should be a sequence.");
96 97 98 99 100
        const int64_t* label_value = label->data<int64_t>();
        size_t numel = label->numel();
        for (size_t i = 0; i < numel; ++i) {
          path[i] = label_value[i] == path[i] ? 1 : 0;
        }
C
Cao Ying 已提交
101 102 103 104 105 106 107 108 109 110 111 112
      }
    }
  }

 private:
  void Decode(const Tensor& emission_weights, const Tensor& transition_weights,
              Tensor* decoded_path) const {
    auto emission_dims = emission_weights.dims();
    const size_t seq_len = emission_dims[0];
    const size_t tag_num = emission_dims[1];
    const T* x = emission_weights.data<T>();
    const T* w = transition_weights.data<T>();
Q
Qiao Longfei 已提交
113
    int64_t* path = decoded_path->data<int64_t>();
C
Cao Ying 已提交
114 115 116 117 118 119 120 121 122

    // alpha is a memo table. An element alpha(k, v) records the score of the
    // best sequence of tags from position 1 to position k with v being the end
    // tag.
    Tensor alpha;
    T* alpha_value = alpha.mutable_data<T>(emission_dims, platform::CPUPlace());
    Tensor track;
    int* track_value =
        track.mutable_data<int>(emission_dims, platform::CPUPlace());
123 124 125
    auto ker =
        jit::KernelFuncs<jit::CRFDecodingTuple<T>, platform::CPUPlace>::Cache()
            .At(tag_num);
126
    ker(static_cast<int>(seq_len), x, w, alpha_value, track_value, tag_num);
C
Cao Ying 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    T max_score = -std::numeric_limits<T>::max();
    int max_i = 0;
    for (size_t i = 0; i < tag_num; ++i) {
      T score = alpha_value[(seq_len - 1) * tag_num + i] + w[tag_num + i];
      if (score > max_score) {
        max_score = score;
        max_i = i;
      }
    }
    path[seq_len - 1] = max_i;
    for (int k = seq_len - 1; k >= 1; --k) {
      path[k - 1] = max_i = track_value[k * tag_num + max_i];
    }
  }
};

}  // namespace operators
}  // namespace paddle