test_sign_op.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest
W
WangXi 已提交
18
import paddle
19
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from paddle.fluid import Program, program_guard
22 23 24
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
25 26 27


class TestSignOp(OpTest):
28

29 30 31
    def setUp(self):
        self.op_type = "sign"
        self.inputs = {
32
            'X': np.random.uniform(-10, 10, (10, 10)).astype("float64")
33 34 35 36 37 38 39 40 41 42
        }
        self.outputs = {'Out': np.sign(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


43
class TestSignOpError(unittest.TestCase):
44

45 46 47 48 49
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sign_op must be Variable or numpy.ndarray.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.sign, input1)
50
            # The input dtype of sign_op must be float16, float32, float64.
51 52 53 54 55 56
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
            input3 = fluid.layers.data(name='input3',
                                       shape=[12, 10],
                                       dtype="int64")
57 58
            self.assertRaises(TypeError, fluid.layers.sign, input2)
            self.assertRaises(TypeError, fluid.layers.sign, input3)
59 60 61
            input4 = fluid.layers.data(name='input4',
                                       shape=[4],
                                       dtype="float16")
62
            fluid.layers.sign(input4)
63 64


W
WangXi 已提交
65
class TestSignAPI(unittest.TestCase):
66

W
WangXi 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([-1., 0., -0., 1.2, 1.5], dtype='float64')
            x = paddle.to_tensor(np_x)
            z = paddle.sign(x)
            np_z = z.numpy()
            z_expected = np.sign(np_x)
            self.assertEqual((np_z == z_expected).all(), True)

    def test_static(self):
        with program_guard(Program(), Program()):
            # The input type of sign_op must be Variable or numpy.ndarray.
            input1 = 12
            self.assertRaises(TypeError, paddle.tensor.math.sign, input1)
            # The input dtype of sign_op must be float16, float32, float64.
82 83 84 85 86 87
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
            input3 = fluid.layers.data(name='input3',
                                       shape=[12, 10],
                                       dtype="int64")
W
WangXi 已提交
88 89
            self.assertRaises(TypeError, paddle.tensor.math.sign, input2)
            self.assertRaises(TypeError, paddle.tensor.math.sign, input3)
90 91 92
            input4 = fluid.layers.data(name='input4',
                                       shape=[4],
                                       dtype="float16")
W
WangXi 已提交
93 94 95
            paddle.sign(input4)


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
class TestSignDoubleGradCheck(unittest.TestCase):

    def sign_wrapper(self, x):
        return paddle.sign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 4], False, dtype)
        data.persistable = True
        out = paddle.sign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.sign_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSignTripleGradCheck(unittest.TestCase):

    def sign_wrapper(self, x):
        return paddle.sign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 4], False, dtype)
        data.persistable = True
        out = paddle.sign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.sign_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


170
if __name__ == "__main__":
171
    paddle.enable_static()
172
    unittest.main()