test_py_func_op.py 7.2 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import os
S
sneaxiy 已提交
16
import paddle.fluid as fluid
17
from paddle.fluid import compiler
S
sneaxiy 已提交
18 19 20 21
import paddle
import unittest
import numpy as np

S
sneaxiy 已提交
22 23 24 25 26
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
    dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)

S
sneaxiy 已提交
27

S
sneaxiy 已提交
28
def dummy_func_with_no_input():
S
sneaxiy 已提交
29
    return np.array([0], dtype='float32')
S
sneaxiy 已提交
30 31 32 33 34 35


def dummy_func_with_no_output(x):
    pass


36 37 38 39
def dummy_func_with_multi_input_output(x, y):
    return np.array(x), np.array(y)


S
sneaxiy 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53
def tanh(x):
    return np.tanh(x)


def tanh_grad(y, dy):
    return np.array(dy) * (1 - np.square(np.array(y)))


def cross_entropy(logits, labels):
    logits = np.array(logits)
    labels = np.array(labels)
    M = logits.shape[0]
    N = logits.shape[1]
    ret = np.ndarray([M, 1]).astype(logits.dtype)
54
    for idx in range(M):
S
sneaxiy 已提交
55 56 57 58 59 60 61 62 63 64 65
        ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
    return ret


def cross_entropy_grad(logits, labels, bwd_dout):
    logits = np.array(logits)
    labels = np.array(labels)
    bwd_dout = np.array(bwd_dout)
    M = logits.shape[0]
    N = logits.shape[1]
    dlogits = np.zeros([M, N]).astype(logits.dtype)
66
    for idx in range(M):
67 68
        dlogits[idx][labels[idx]
                     [0]] = -bwd_dout[idx] / logits[idx][labels[idx][0]]
S
sneaxiy 已提交
69 70 71 72 73 74 75 76 77
    return dlogits, None


def simple_fc_net(img, label, use_py_func_op):
    hidden = img
    for idx in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
78 79
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=1.0)))
S
sneaxiy 已提交
80
        if not use_py_func_op:
S
sneaxiy 已提交
81 82 83
            hidden = fluid.layers.tanh(hidden)
        else:
            new_hidden = fluid.default_main_program().current_block(
84 85 86 87 88 89 90 91
            ).create_var(name='hidden_{}'.format(idx),
                         dtype='float32',
                         shape=hidden.shape)
            hidden = fluid.layers.py_func(func=tanh,
                                          x=hidden,
                                          out=new_hidden,
                                          backward_func=tanh_grad,
                                          skip_vars_in_backward_input=hidden)
S
sneaxiy 已提交
92 93 94 95 96 97 98

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    if not use_py_func_op:
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
    else:
        loss = fluid.default_main_program().current_block().create_var(
            name='loss', dtype='float32', shape=[-1, 1])
99 100 101 102 103
        loss = fluid.layers.py_func(func=cross_entropy,
                                    x=[prediction, label],
                                    out=loss,
                                    backward_func=cross_entropy_grad,
                                    skip_vars_in_backward_input=loss)
S
sneaxiy 已提交
104

S
sneaxiy 已提交
105 106
        dummy_var = fluid.default_main_program().current_block().create_var(
            name='test_tmp_var', dtype='float32', shape=[1])
107 108 109
        fluid.layers.py_func(func=dummy_func_with_no_input,
                             x=None,
                             out=dummy_var)
S
sneaxiy 已提交
110
        loss += dummy_var
S
sneaxiy 已提交
111 112
        fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)

113 114 115 116
        loss_out = fluid.default_main_program().current_block().create_var(
            dtype='float32', shape=[-1, 1])
        dummy_var_out = fluid.default_main_program().current_block().create_var(
            dtype='float32', shape=[1])
117 118 119
        fluid.layers.py_func(func=dummy_func_with_multi_input_output,
                             x=(loss, dummy_var),
                             out=(loss_out, dummy_var_out))
120 121 122
        assert loss == loss_out and dummy_var == dummy_var_out, \
            "py_func failed with multi input and output"

123 124 125
        fluid.layers.py_func(func=dummy_func_with_multi_input_output,
                             x=[loss, dummy_var],
                             out=[loss_out, dummy_var_out])
126 127 128
        assert loss == loss_out and dummy_var == dummy_var_out, \
            "py_func failed with multi input and output"

129
    loss = paddle.mean(loss)
S
sneaxiy 已提交
130 131 132 133
    return loss


def reader():
134
    for _ in range(dev_cnt * 100):
135 136 137
        yield np.random.random([784]), np.random.random_integers(size=[1],
                                                                 low=0,
                                                                 high=9)
S
sneaxiy 已提交
138 139


S
sneaxiy 已提交
140
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
S
sneaxiy 已提交
141 142 143 144 145
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return None

    with fluid.program_guard(fluid.Program(), fluid.Program()):
        with fluid.scope_guard(fluid.core.Scope()):
C
cnn 已提交
146
            gen = paddle.seed(1)
S
sneaxiy 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
            np.random.seed(1)
            img = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = simple_fc_net(img, label, use_py_func_op)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
            r = paddle.batch(reader, batch_size=10)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
160

C
chengduo 已提交
161 162
            train_cp = fluid.default_main_program()

S
sneaxiy 已提交
163
            if use_parallel_executor:
164 165
                train_cp = compiler.CompiledProgram(
                    fluid.default_main_program())
166
                train_cp = train_cp.with_data_parallel(loss_name=loss.name)
S
sneaxiy 已提交
167 168 169 170
                fetch_list = [loss.name]
            else:
                fetch_list = [loss]

S
sneaxiy 已提交
171
            ret = []
172
            for epoch_id in range(2):
S
sneaxiy 已提交
173
                for d in r():
174 175 176
                    L, = exe.run(train_cp,
                                 feed=feeder.feed(d),
                                 fetch_list=fetch_list)
S
sneaxiy 已提交
177
                    ret.append(L)
S
sneaxiy 已提交
178 179 180
            return np.array(ret)


S
sneaxiy 已提交
181
class TestPyFuncOpUseExecutor(unittest.TestCase):
182

S
sneaxiy 已提交
183 184 185
    def setUp(self):
        self.use_parallel_executor = False

S
sneaxiy 已提交
186 187
    def test_loss_diff(self):
        for use_cuda in [True, False]:
L
Leo Chen 已提交
188
            losses = []
S
sneaxiy 已提交
189
            for use_py_func_op in [True, False]:
S
sneaxiy 已提交
190 191
                L = test_main(use_cuda, use_py_func_op,
                              self.use_parallel_executor)
S
sneaxiy 已提交
192 193 194
                if L is not None:
                    losses.append(L)

195
                for idx in range(len(losses) - 1):
L
Leo Chen 已提交
196 197
                    max_diff = np.max(np.abs(losses[idx] - losses[0]))
                    self.assertAlmostEqual(max_diff, 0, delta=1e-3)
S
sneaxiy 已提交
198 199


S
sneaxiy 已提交
200
class TestPyFuncOpUseParallelExecutor(TestPyFuncOpUseExecutor):
201

S
sneaxiy 已提交
202 203 204 205
    def setUp(self):
        self.use_parallel_executor = True


S
sneaxiy 已提交
206 207
if __name__ == '__main__':
    unittest.main()