test_pad_op.py 5.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
W
wanghaoshuang 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest
X
xiaoting 已提交
19
import paddle
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
W
wanghaoshuang 已提交
23

24 25
from test_attribute_var import UnittestBase

W
wanghaoshuang 已提交
26

W
wanghaoshuang 已提交
27
class TestPadOp(OpTest):
28

W
wanghaoshuang 已提交
29
    def setUp(self):
W
wanghaoshuang 已提交
30
        self.initTestCase()
31
        self.dtype = self.get_dtype()
W
wanghaoshuang 已提交
32
        self.op_type = "pad"
33 34 35
        self.inputs = {
            'X': np.random.random(self.shape).astype(self.dtype),
        }
W
wanghaoshuang 已提交
36
        self.attrs = {}
W
wanghaoshuang 已提交
37 38
        self.attrs['paddings'] = np.array(self.paddings).flatten()
        self.attrs['pad_value'] = self.pad_value
W
wanghaoshuang 已提交
39
        self.outputs = {
40 41 42 43 44
            'Out':
            np.pad(self.inputs['X'],
                   self.paddings,
                   mode='constant',
                   constant_values=self.pad_value)
W
wanghaoshuang 已提交
45 46
        }

47
    def get_dtype(self):
48
        return np.float64
49

W
wanghaoshuang 已提交
50 51 52 53
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
54
        self.check_grad(['X'], 'Out')
W
wanghaoshuang 已提交
55

W
wanghaoshuang 已提交
56 57 58
    def initTestCase(self):
        self.shape = (16, 16)
        self.paddings = [(0, 1), (2, 3)]
Y
Yang Yang(Tony) 已提交
59
        self.pad_value = 0.0
W
wanghaoshuang 已提交
60 61 62


class TestCase1(TestPadOp):
63

W
wanghaoshuang 已提交
64
    def initTestCase(self):
65
        self.shape = (2, 3, 4, 5)
W
wanghaoshuang 已提交
66 67 68 69 70
        self.paddings = [(0, 1), (2, 3), (2, 1), (1, 1)]
        self.pad_value = 0.5


class TestCase2(TestPadOp):
71

W
wanghaoshuang 已提交
72
    def initTestCase(self):
Z
zhupengyang 已提交
73
        self.shape = (5, 5, 5)
W
wanghaoshuang 已提交
74
        self.paddings = [(0, 0), (0, 0), (1, 2)]
Y
Yang Yang(Tony) 已提交
75
        self.pad_value = 1.0
W
wanghaoshuang 已提交
76 77 78


class TestCase3(TestPadOp):
79

W
wanghaoshuang 已提交
80
    def initTestCase(self):
Z
zhupengyang 已提交
81
        self.shape = (100)
W
wanghaoshuang 已提交
82 83 84
        self.paddings = [(0, 1)]
        self.pad_value = 0.9

W
wanghaoshuang 已提交
85

86 87 88 89
#----------------Pad Fp16----------------


def create_test_fp16(parent):
90

91 92
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
93
    class TestPadFp16(parent):
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        def get_dtype(self):
            return np.float16

        def test_check_grad_normal(self):
            self.check_grad(['X'], 'Out', max_relative_error=0.3)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestPadFp16.__name__ = cls_name
    globals()[cls_name] = TestPadFp16


create_test_fp16(TestPadOp)
create_test_fp16(TestCase1)
create_test_fp16(TestCase2)
create_test_fp16(TestCase3)

111 112

class TestPadOpError(unittest.TestCase):
113

114 115 116 117 118 119 120 121 122 123 124 125 126
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.random((2, 2)).astype("float32")

            def test_Variable():
                fluid.layers.pad(x=input_data, paddings=[1, 1, 1, 1])

            self.assertRaises(TypeError, test_Variable)

            data = fluid.data(name='data', shape=[4], dtype='float16')
            fluid.layers.pad(x=data, paddings=[0, 1])


127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class TestPaddingValueTensor(UnittestBase):

    def init_info(self):
        self.shapes = [[2, 4]]
        self.save_path = os.path.join(self.temp_dir.name, self.path_prefix())

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(4, 10)
            x = paddle.randn([2, 4])
            x.stop_gradient = False
            feat = fc(x)  # [2,3,10]

            out = self.call_func(feat)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue(self.var_prefix() in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out])
            gt = np.pad(res[0], [1, 1], 'constant', constant_values=[1., 1.])
            np.testing.assert_allclose(res[1], gt)
            paddle.static.save_inference_model(self.save_path, [x], [feat, out],
                                               exe)
            # Test for Inference Predictor
            infer_outs = self.infer_prog()
            gt = np.pad(infer_outs[0], [1, 1],
                        'constant',
                        constant_values=[1., 1.])
            np.testing.assert_allclose(infer_outs[1], gt)

    def path_prefix(self):
        return 'padding_value'

    def var_prefix(self):
        return "Var["

    def call_func(self, x):
        padding_value = paddle.assign([1.0])
        out = paddle.nn.functional.pad(x,
                                       pad=[1, 1, 1, 1],
                                       value=padding_value,
                                       mode='constant')
        return out


class TestPaddingValueTensor2(TestPaddingValueTensor):

    def call_func(self, x):
        padding_value = paddle.assign([1.0])
        # test for int value
        tmp = paddle.fluid.layers.pad(x, paddings=[1, 1, 1, 1], pad_value=1)
        out = paddle.fluid.layers.pad(x,
                                      paddings=[1, 1, 1, 1],
                                      pad_value=padding_value)
        return out


W
wanghaoshuang 已提交
189
if __name__ == '__main__':
190
    paddle.enable_static()
W
wanghaoshuang 已提交
191
    unittest.main()