test_eigvals_op.py 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import unittest
import paddle.fluid.core as core
import numpy as np
from op_test import OpTest

np.set_printoptions(threshold=np.inf)


def np_eigvals(a):
    res = np.linalg.eigvals(a)
    if (a.dtype == np.float32 or a.dtype == np.complex64):
        res = res.astype(np.complex64)
    else:
        res = res.astype(np.complex128)

    return res


class TestEigvalsOp(OpTest):
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    def setUp(self):
        np.random.seed(0)
        paddle.enable_static()
        self.op_type = "eigvals"
        self.set_dtype()
        self.set_input_dims()
        self.set_input_data()

        np_output = np_eigvals(self.input_data)

        self.inputs = {'X': self.input_data}
        self.outputs = {'Out': np_output}

    def set_dtype(self):
        self.dtype = np.float32

    def set_input_dims(self):
        self.input_dims = (5, 5)

    def set_input_data(self):
        if (self.dtype == np.float32 or self.dtype == np.float64):
            self.input_data = np.random.random(self.input_dims).astype(
                self.dtype)
        else:
60 61 62
            self.input_data = (np.random.random(self.input_dims) +
                               np.random.random(self.input_dims) * 1j).astype(
                                   self.dtype)
63 64 65

    def test_check_output(self):
        self.__class__.no_need_check_grad = True
66 67
        self.check_output_with_place_customized(checker=self.verify_output,
                                                place=core.CPUPlace())
68 69 70 71 72 73 74 75 76 77

    def verify_output(self, outs):
        actual_outs = np.sort(np.array(outs[0]))
        expect_outs = np.sort(np.array(self.outputs['Out']))
        self.assertTrue(
            actual_outs.shape == expect_outs.shape, "Output shape has diff.\n"
            "Expect shape " + str(expect_outs.shape) + "\n" + "But Got" +
            str(actual_outs.shape) + " in class " + self.__class__.__name__)

        n_dim = actual_outs.shape[-1]
78 79
        for actual_row, expect_row in zip(actual_outs.reshape((-1, n_dim)),
                                          expect_outs.reshape((-1, n_dim))):
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            is_mapped_index = np.zeros((n_dim, ))
            for i in range(n_dim):
                is_mapped = False
                for j in range(n_dim):
                    if is_mapped_index[j] == 0 and np.isclose(
                            np.array(actual_row[i]),
                            np.array(expect_row[j]),
                            atol=1e-5):
                        is_mapped_index[j] = True
                        is_mapped = True
                        break
                self.assertTrue(
                    is_mapped,
                    "Output has diff in class " + self.__class__.__name__ +
                    "\nExpect " + str(expect_outs) + "\n" + "But Got" +
                    str(actual_outs) + "\nThe data " + str(actual_row[i]) +
                    " in " + str(actual_row) + " mismatch.")


class TestEigvalsOpFloat64(TestEigvalsOp):
100

101 102 103 104 105
    def set_dtype(self):
        self.dtype = np.float64


class TestEigvalsOpComplex64(TestEigvalsOp):
106

107 108 109 110 111
    def set_dtype(self):
        self.dtype = np.complex64


class TestEigvalsOpComplex128(TestEigvalsOp):
112

113 114 115 116 117
    def set_dtype(self):
        self.dtype = np.complex128


class TestEigvalsOpLargeScare(TestEigvalsOp):
118

119 120 121 122 123
    def set_input_dims(self):
        self.input_dims = (128, 128)


class TestEigvalsOpLargeScareFloat64(TestEigvalsOpLargeScare):
124

125 126 127 128 129
    def set_dtype(self):
        self.dtype = np.float64


class TestEigvalsOpLargeScareComplex64(TestEigvalsOpLargeScare):
130

131 132 133 134 135
    def set_dtype(self):
        self.dtype = np.complex64


class TestEigvalsOpLargeScareComplex128(TestEigvalsOpLargeScare):
136

137 138 139 140 141
    def set_dtype(self):
        self.dtype = np.complex128


class TestEigvalsOpBatch1(TestEigvalsOp):
142

143 144 145 146 147
    def set_input_dims(self):
        self.input_dims = (1, 2, 3, 4, 4)


class TestEigvalsOpBatch2(TestEigvalsOp):
148

149 150 151 152 153
    def set_input_dims(self):
        self.input_dims = (3, 1, 4, 5, 5)


class TestEigvalsOpBatch3(TestEigvalsOp):
154

155 156 157 158 159
    def set_input_dims(self):
        self.input_dims = (6, 2, 9, 6, 6)


class TestEigvalsAPI(unittest.TestCase):
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    def setUp(self):
        np.random.seed(0)

        self.small_dims = [6, 6]
        self.large_dims = [128, 128]
        self.batch_dims = [6, 9, 2, 2]

        self.set_dtype()

        self.input_dims = self.small_dims
        self.set_input_data()
        self.small_input = np.copy(self.input_data)

        self.input_dims = self.large_dims
        self.set_input_data()
        self.large_input = np.copy(self.input_data)

        self.input_dims = self.batch_dims
        self.set_input_data()
        self.batch_input = np.copy(self.input_data)

    def set_dtype(self):
        self.dtype = np.float32

    def set_input_data(self):
        if (self.dtype == np.float32 or self.dtype == np.float64):
            self.input_data = np.random.random(self.input_dims).astype(
                self.dtype)
        else:
190 191 192
            self.input_data = (np.random.random(self.input_dims) +
                               np.random.random(self.input_dims) * 1j).astype(
                                   self.dtype)
193 194 195 196 197 198 199 200 201 202

    def verify_output(self, actural_outs, expect_outs):
        actual_outs = np.array(actural_outs)
        expect_outs = np.array(expect_outs)
        self.assertTrue(
            actual_outs.shape == expect_outs.shape, "Output shape has diff."
            "\nExpect shape " + str(expect_outs.shape) + "\n" + "But Got" +
            str(actual_outs.shape) + " in class " + self.__class__.__name__)

        n_dim = actual_outs.shape[-1]
203 204
        for actual_row, expect_row in zip(actual_outs.reshape((-1, n_dim)),
                                          expect_outs.reshape((-1, n_dim))):
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            is_mapped_index = np.zeros((n_dim, ))
            for i in range(n_dim):
                is_mapped = False
                for j in range(n_dim):
                    if is_mapped_index[j] == 0 and np.isclose(
                            np.array(actual_row[i]),
                            np.array(expect_row[j]),
                            atol=1e-5):
                        is_mapped_index[j] = True
                        is_mapped = True
                        break
                self.assertTrue(
                    is_mapped,
                    "Output has diff in class " + self.__class__.__name__ +
                    "\nExpect " + str(expect_outs) + "\n" + "But Got" +
                    str(actual_outs) + "\nThe data " + str(actual_row[i]) +
                    " in " + str(actual_row) + " mismatch.")

    def run_dygraph(self, place):
        paddle.disable_static()
        paddle.set_device("cpu")
        small_input_tensor = paddle.to_tensor(self.small_input, place=place)
        large_input_tensor = paddle.to_tensor(self.large_input, place=place)
        batch_input_tensor = paddle.to_tensor(self.batch_input, place=place)

        paddle_outs = paddle.linalg.eigvals(small_input_tensor, name='small_x')
        np_outs = np_eigvals(self.small_input)
        self.verify_output(paddle_outs, np_outs)

        paddle_outs = paddle.linalg.eigvals(large_input_tensor, name='large_x')
        np_outs = np_eigvals(self.large_input)
        self.verify_output(paddle_outs, np_outs)

        paddle_outs = paddle.linalg.eigvals(batch_input_tensor, name='small_x')
        np_outs = np_eigvals(self.batch_input)
        self.verify_output(paddle_outs, np_outs)

    def run_static(self, place):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            small_input_tensor = paddle.static.data(name='small_x',
                                                    shape=self.small_dims,
                                                    dtype=self.dtype)
            large_input_tensor = paddle.static.data(name='large_x',
                                                    shape=self.large_dims,
                                                    dtype=self.dtype)
            batch_input_tensor = paddle.static.data(name='batch_x',
                                                    shape=self.batch_dims,
                                                    dtype=self.dtype)

            small_outs = paddle.linalg.eigvals(small_input_tensor,
                                               name='small_x')
            large_outs = paddle.linalg.eigvals(large_input_tensor,
                                               name='large_x')
            batch_outs = paddle.linalg.eigvals(batch_input_tensor,
                                               name='batch_x')
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

            exe = paddle.static.Executor(place)

            paddle_outs = exe.run(
                feed={
                    "small_x": self.small_input,
                    "large_x": self.large_input,
                    "batch_x": self.batch_input
                },
                fetch_list=[small_outs, large_outs, batch_outs])

            np_outs = np_eigvals(self.small_input)
            self.verify_output(paddle_outs[0], np_outs)

            np_outs = np_eigvals(self.large_input)
            self.verify_output(paddle_outs[1], np_outs)

            np_outs = np_eigvals(self.batch_input)
            self.verify_output(paddle_outs[2], np_outs)

    def test_cases(self):
        places = [core.CPUPlace()]
        #if core.is_compiled_with_cuda():
        #    places.append(core.CUDAPlace(0))
        for place in places:
            self.run_dygraph(place)
            self.run_static(place)

    def test_error(self):
        paddle.disable_static()
        x = paddle.to_tensor([1])
        with self.assertRaises(BaseException):
            paddle.linalg.eigvals(x)

        self.input_dims = [1, 2, 3, 4]
        self.set_input_data()
        x = paddle.to_tensor(self.input_data)
        with self.assertRaises(BaseException):
            paddle.linalg.eigvals(x)


class TestEigvalsAPIFloat64(TestEigvalsAPI):
304

305 306 307 308 309
    def set_dtype(self):
        self.dtype = np.float64


class TestEigvalsAPIComplex64(TestEigvalsAPI):
310

311 312 313 314 315
    def set_dtype(self):
        self.dtype = np.complex64


class TestEigvalsAPIComplex128(TestEigvalsAPI):
316

317 318 319 320 321 322
    def set_dtype(self):
        self.dtype = np.complex128


if __name__ == "__main__":
    unittest.main()