test_center_loss.py 5.2 KB
Newer Older
H
HaoRen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
H
HaoRen 已提交
19 20 21


class TestCenterLossOp(OpTest):
22

H
HaoRen 已提交
23 24
    def setUp(self):
        self.op_type = "center_loss"
25
        self.dtype = np.float64
H
HaoRen 已提交
26
        self.init_dtype_type()
27
        batch_size = 12
H
HaoRen 已提交
28 29 30 31 32 33 34 35
        feet_dim = 10
        cluster_num = 8
        self.attrs = {}
        self.attrs['cluster_num'] = cluster_num
        self.attrs['lambda'] = 0.1
        self.config()
        self.attrs['need_update'] = self.need_update
        labels = np.random.randint(cluster_num, size=batch_size, dtype='int64')
36 37 38
        feat = np.random.random((batch_size, feet_dim)).astype(np.float64)
        centers = np.random.random((cluster_num, feet_dim)).astype(np.float64)
        var_sum = np.zeros((cluster_num, feet_dim), dtype=np.float64)
H
HaoRen 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
        centers_select = centers[labels]
        output = feat - centers_select
        diff_square = np.square(output).reshape(batch_size, feet_dim)
        loss = 0.5 * np.sum(diff_square, axis=1).reshape(batch_size, 1)
        cout = []
        for i in range(cluster_num):
            cout.append(0)
        for i in range(batch_size):
            cout[labels[i]] += 1
            var_sum[labels[i]] += output[i]
        for i in range(cluster_num):
            var_sum[i] /= (1 + cout[i])
        var_sum *= 0.1
        result = centers + var_sum
53
        rate = np.array([0.1]).astype(np.float64)
H
HaoRen 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

        self.inputs = {
            'X': feat,
            'Label': labels,
            'Centers': centers,
            'CenterUpdateRate': rate
        }

        if self.need_update == True:
            self.outputs = {
                'SampleCenterDiff': output,
                'Loss': loss,
                'CentersOut': result
            }
        else:
            self.outputs = {
                'SampleCenterDiff': output,
                'Loss': loss,
                'CentersOut': centers
            }

    def config(self):
        self.need_update = True

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Loss')


class TestCenterLossOpNoUpdate(TestCenterLossOp):
89

H
HaoRen 已提交
90 91 92 93
    def config(self):
        self.need_update = False


94
class BadInputTestCenterLoss(unittest.TestCase):
95

96 97 98 99 100
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                data = [[1, 2, 3, 4], [5, 6, 7, 8]]
101 102 103
                label = fluid.layers.data(name='label',
                                          shape=[2, 1],
                                          dtype='int32')
104 105 106 107 108 109 110 111 112 113 114
                res = fluid.layers.center_loss(
                    data,
                    label,
                    num_classes=1000,
                    alpha=0.2,
                    param_attr=fluid.initializer.Xavier(uniform=False),
                    update_center=True)

            self.assertRaises(TypeError, test_bad_x)

            def test_bad_y():
115 116 117
                data = fluid.layers.data(name='data',
                                         shape=[2, 32],
                                         dtype='float32')
118 119 120 121 122 123 124 125 126 127 128 129
                label = [[2], [3]]
                res = fluid.layers.center_loss(
                    data,
                    label,
                    num_classes=1000,
                    alpha=0.2,
                    param_attr=fluid.initializer.Xavier(uniform=False),
                    update_center=True)

            self.assertRaises(TypeError, test_bad_y)

            def test_bad_alpha():
130 131 132 133 134 135 136 137 138 139 140 141
                data = fluid.layers.data(name='data2',
                                         shape=[2, 32],
                                         dtype='float32',
                                         append_batch_size=False)
                label = fluid.layers.data(name='label2',
                                          shape=[2, 1],
                                          dtype='int32',
                                          append_batch_size=False)
                alpha = fluid.layers.data(name='alpha',
                                          shape=[1],
                                          dtype='int64',
                                          append_batch_size=False)
142 143 144 145 146 147 148 149 150 151 152
                res = fluid.layers.center_loss(
                    data,
                    label,
                    num_classes=1000,
                    alpha=alpha,
                    param_attr=fluid.initializer.Xavier(uniform=False),
                    update_center=True)

            self.assertRaises(TypeError, test_bad_alpha)


H
HaoRen 已提交
153 154
if __name__ == "__main__":
    unittest.main()