optimizer.py 3.3 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import paddle
from .meta_optimizers import HybridParallelOptimizer, HeterParallelOptimizer
from paddle.distributed import fleet
R
Roc 已提交
19
from .utils.log_util import logger
W
wuhuachaocoding 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def _dygraph_distributed_optimizer(optimizer, strategy=None):
    """
        Optimizer for distributed training.
        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.
        Args:
            optimizer(Optimizer): The executor to run for init server.
            strategy(DistributedStrategy): Extra properties for distributed optimizer.
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer()
                is not None, then it will overwrite the DistributedStrategy in fleet.init(),
                which will take effect in distributed training.
        Returns:
            Fleet: instance of fleet.
        Examples:
            .. code-block:: python
                import paddle
                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        """
    fleet_env = fleet.fleet
    fleet_env.user_defined_optimizer = optimizer

    if strategy is not None:
        if fleet_env._is_collective:
R
Roc 已提交
50
            logger.warning(
W
wuhuachaocoding 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
                "It is recommended to use DistributedStrategy "
                "in fleet_env.init(). The strategy here is only for compatibility. "
                "If the strategy in fleet_env.distributed_optimizer() is "
                "not None, then it will overwrite the DistributedStrategy in fleet_env.init(), "
                "which will take effect in distributed training.")
        fleet_env._user_defined_strategy = copy.deepcopy(strategy)

    fleet_env._context = {}

    if fleet_env.worker_num() > 1:
        if fleet_env._user_defined_strategy.heter_ccl_mode == False:
            return HybridParallelOptimizer(optimizer, fleet_env._hcg,
                                           fleet_env._user_defined_strategy)
        else:
            return HeterParallelOptimizer(optimizer,
                                          fleet_env._user_defined_strategy)
    else:
        return optimizer


def distributed_optimizer(*args, **kwargs):
    if paddle.fluid.framework._non_static_mode():
        return _dygraph_distributed_optimizer(*args, **kwargs)
    else:
        return fleet.fleet.distributed_optimizer(*args, **kwargs)