yolov3.py 10.4 KB
Newer Older
1 2
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17
import os
import sys

18
from darknet import ConvBNLayer, DarkNet53_conv_body
19

20
import paddle
21
from paddle import _legacy_C_ops, fluid
22
from paddle.fluid.param_attr import ParamAttr
H
hjyp 已提交
23
from paddle.jit.api import to_static
24
from paddle.regularizer import L2Decay
25 26 27 28


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
29
        super().__init__(*args, **kwargs)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    def __getattr__(self, name):
        if name in self.__dict__:
            return self.__dict__[name]
        elif name in self:
            return self[name]
        else:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        if name in self.__dict__:
            self.__dict__[name] = value
        else:
            self[name] = value


#
# Training options
#
cfg = AttrDict()
# Snapshot period
cfg.snapshot_iter = 2000
# min valid area for gt boxes
cfg.gt_min_area = -1
# max target box number in an image
cfg.max_box_num = 50
# valid score threshold to include boxes
cfg.valid_thresh = 0.005
# threshold vale for box non-max suppression
cfg.nms_thresh = 0.45
# the number of top k boxes to perform nms
cfg.nms_topk = 400
# the number of output boxes after nms
cfg.nms_posk = 100
# score threshold for draw box in debug mode
cfg.draw_thresh = 0.5
# Use label smooth in class label
cfg.label_smooth = True
#
# Model options
#
# input size
72
cfg.input_size = 224 if sys.platform == 'darwin' else 608
73 74 75 76 77 78
# pixel mean values
cfg.pixel_means = [0.485, 0.456, 0.406]
# pixel std values
cfg.pixel_stds = [0.229, 0.224, 0.225]
# anchors box weight and height
cfg.anchors = [
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    10,
    13,
    16,
    30,
    33,
    23,
    30,
    61,
    62,
    45,
    59,
    119,
    116,
    90,
    156,
    198,
    373,
    326,
97 98 99 100
]
# anchor mask of each yolo layer
cfg.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# IoU threshold to ignore objectness loss of pred box
101
cfg.ignore_thresh = 0.7
102 103 104 105
#
# SOLVER options
#
# batch size
106
cfg.batch_size = 1 if sys.platform == 'darwin' or os.name == 'nt' else 4
107 108 109
# derived learning rate the to get the final learning rate.
cfg.learning_rate = 0.001
# maximum number of iterations
110
cfg.max_iter = 20 if fluid.is_compiled_with_cuda() else 1
111 112
# Disable mixup in last N iter
cfg.no_mixup_iter = 10 if fluid.is_compiled_with_cuda() else 1
113
# warm up to learning rate
114
cfg.warm_up_iter = 10 if fluid.is_compiled_with_cuda() else 1
115
cfg.warm_up_factor = 0.0
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
# lr steps_with_decay
cfg.lr_steps = [400000, 450000]
cfg.lr_gamma = 0.1
# L2 regularization hyperparameter
cfg.weight_decay = 0.0005
# momentum with SGD
cfg.momentum = 0.9
#
# ENV options
#
# support both CPU and GPU
cfg.use_gpu = fluid.is_compiled_with_cuda()
# Class number
cfg.class_num = 80


132
class YoloDetectionBlock(paddle.nn.Layer):
133
    def __init__(self, ch_in, channel, is_test=True):
134
        super().__init__()
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        assert channel % 2 == 0, "channel {} cannot be divided by 2".format(
            channel
        )

        self.conv0 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
        )
        self.conv1 = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
        )
        self.conv2 = ConvBNLayer(
            ch_in=channel * 2,
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
        )
        self.conv3 = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
        )
        self.route = ConvBNLayer(
            ch_in=channel * 2,
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
        )
        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
        )
188 189 190 191 192 193 194 195 196 197 198

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip


199
class Upsample(paddle.nn.Layer):
200
    def __init__(self, scale=2):
201
        super().__init__()
202 203 204 205
        self.scale = scale

    def forward(self, inputs):
        # get dynamic upsample output shape
2
201716010711 已提交
206
        shape_nchw = paddle.shape(inputs)
2
201716010711 已提交
207
        shape_hw = paddle.slice(shape_nchw, axes=[0], starts=[2], ends=[4])
208
        shape_hw.stop_gradient = True
209
        in_shape = paddle.cast(shape_hw, dtype='int32')
210 211 212 213
        out_shape = in_shape * self.scale
        out_shape.stop_gradient = True

        # reisze by actual_shape
214 215
        out = paddle.nn.functional.interpolate(
            x=inputs, size=out_shape, mode='nearest'
216
        )
217

218 219 220
        return out


221
class YOLOv3(paddle.nn.Layer):
222
    def __init__(self, ch_in, is_train=True, use_random=False):
223
        super().__init__()
224 225 226 227 228 229 230 231 232 233 234 235

        self.is_train = is_train
        self.use_random = use_random

        self.block = DarkNet53_conv_body(ch_in=ch_in, is_test=not self.is_train)
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks_2 = []
        ch_in_list = [1024, 768, 384]
        for i in range(3):
            yolo_block = self.add_sublayer(
                "yolo_detecton_block_%d" % (i),
236 237 238 239 240 241
                YoloDetectionBlock(
                    ch_in_list[i],
                    channel=512 // (2**i),
                    is_test=not self.is_train,
                ),
            )
242 243 244 245 246 247
            self.yolo_blocks.append(yolo_block)

            num_filters = len(cfg.anchor_masks[i]) * (cfg.class_num + 5)

            block_out = self.add_sublayer(
                "block_out_%d" % (i),
248 249 250 251
                paddle.nn.Conv2D(
                    in_channels=1024 // (2**i),
                    out_channels=num_filters,
                    kernel_size=1,
252 253
                    stride=1,
                    padding=0,
254
                    weight_attr=ParamAttr(
255
                        initializer=paddle.nn.initializer.Normal(0.0, 0.02)
256 257
                    ),
                    bias_attr=ParamAttr(
258
                        initializer=paddle.nn.initializer.Constant(0.0),
259 260 261 262
                        regularizer=L2Decay(0.0),
                    ),
                ),
            )
263 264 265 266
            self.block_outputs.append(block_out)
            if i < 2:
                route = self.add_sublayer(
                    "route2_%d" % i,
267 268 269 270 271 272 273 274 275
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        is_test=(not self.is_train),
                    ),
                )
276 277 278
                self.route_blocks_2.append(route)
            self.upsample = Upsample()

H
hjyp 已提交
279
    @to_static
280 281 282 283 284 285 286 287 288
    def forward(
        self,
        inputs,
        gtbox=None,
        gtlabel=None,
        gtscore=None,
        im_id=None,
        im_shape=None,
    ):
289 290 291 292 293 294 295 296
        self.outputs = []
        self.boxes = []
        self.scores = []
        self.losses = []
        self.downsample = 32
        blocks = self.block(inputs)
        for i, block in enumerate(blocks):
            if i > 0:
297
                block = paddle.concat([route, block], axis=1)  # noqa: F821
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
            route, tip = self.yolo_blocks[i](block)
            block_out = self.block_outputs[i](tip)
            self.outputs.append(block_out)

            if i < 2:
                route = self.route_blocks_2[i](route)
                route = self.upsample(route)
        self.gtbox = gtbox
        self.gtlabel = gtlabel
        self.gtscore = gtscore
        self.im_id = im_id
        self.im_shape = im_shape

        # cal loss
        for i, out in enumerate(self.outputs):
            anchor_mask = cfg.anchor_masks[i]
            if self.is_train:
315
                loss = paddle.vision.ops.yolo_loss(
316 317 318 319 320 321 322 323 324
                    x=out,
                    gt_box=self.gtbox,
                    gt_label=self.gtlabel,
                    gt_score=self.gtscore,
                    anchors=cfg.anchors,
                    anchor_mask=anchor_mask,
                    class_num=cfg.class_num,
                    ignore_thresh=cfg.ignore_thresh,
                    downsample_ratio=self.downsample,
325 326
                    use_label_smooth=cfg.label_smooth,
                )
327
                self.losses.append(paddle.mean(loss))
328 329 330 331 332 333

            else:
                mask_anchors = []
                for m in anchor_mask:
                    mask_anchors.append(cfg.anchors[2 * m])
                    mask_anchors.append(cfg.anchors[2 * m + 1])
334
                boxes, scores = paddle.vision.ops.yolo_box(
335 336 337 338 339 340
                    x=out,
                    img_size=self.im_shape,
                    anchors=mask_anchors,
                    class_num=cfg.class_num,
                    conf_thresh=cfg.valid_thresh,
                    downsample_ratio=self.downsample,
341 342
                    name="yolo_box" + str(i),
                )
343
                self.boxes.append(boxes)
344
                self.scores.append(paddle.transpose(scores, perm=[0, 2, 1]))
345 346
            self.downsample //= 2

347 348
        if not self.is_train:
            # get pred
349 350
            yolo_boxes = paddle.concat(self.boxes, axis=1)
            yolo_scores = paddle.concat(self.scores, axis=2)
351

352
            pred = _legacy_C_ops.multiclass_nms(
353 354 355 356 357 358 359 360
                bboxes=yolo_boxes,
                scores=yolo_scores,
                score_threshold=cfg.valid_thresh,
                nms_top_k=cfg.nms_topk,
                keep_top_k=cfg.nms_posk,
                nms_threshold=cfg.nms_thresh,
                background_label=-1,
            )
361 362 363
            return pred
        else:
            return sum(self.losses)