pull_dense_worker.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
W
wanghuancoder 已提交
15

16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
18 19 20 21 22

namespace paddle {
namespace framework {

std::shared_ptr<PullDenseWorker> PullDenseWorker::s_instance_ = NULL;
D
dongdaxiang 已提交
23 24 25 26 27 28
std::mutex PullDenseWorker::mutex_for_version_;
std::map<uint64_t, uint64_t> PullDenseWorker::last_versions_;
std::map<uint64_t, uint64_t> PullDenseWorker::current_version_;
std::map<uint64_t, std::vector<uint64_t>> PullDenseWorker::training_versions_;
std::map<uint64_t, std::vector<std::string>>
    PullDenseWorker::dense_value_names_;
29 30 31 32

void PullDenseWorker::Initialize(const TrainerDesc& param) {
  running_ = false;
  param_ = param.pull_dense_param();
H
heqiaozhi 已提交
33
  dwp_param_ = param.downpour_param();
34 35 36
  threshold_ = param_.threshold();
  thread_num_ = param_.device_num();
  sleep_time_ms_ = param_.sleep_time_ms();
37 38
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
H
heqiaozhi 已提交
39 40 41 42 43 44 45 46 47
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    TableParameter table;
    for (auto i : param_.dense_table()) {
      if (i.table_id() == tid) {
        table = i;
        break;
      }
    }
48
    // setup dense variables for each table
H
heqiaozhi 已提交
49
    int var_num = table.dense_value_name_size();
50 51
    dense_value_names_[tid].resize(var_num);
    for (int j = 0; j < var_num; ++j) {
52
      dense_value_names_[tid][j] = table.dense_value_name(j);
53 54 55 56 57 58
    }
    // setup training version for each table
    training_versions_[tid].resize(thread_num_, 0);
    last_versions_[tid] = 0;
    current_version_[tid] = 0;
  }
59
  fleet_ptr_ = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
60 61
#ifdef PADDLE_WITH_CUDA
  copy_streams_.clear();
T
Thunderbrook 已提交
62 63
#endif
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
64 65 66 67 68 69
  places_.clear();
  thread_scopes_.clear();
#endif
}

void PullDenseWorker::CreatePinVar() {
70
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
  // for (auto& v : dense_value_names_) {
  //  for (auto& name : v.second) {
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];
      Variable* var = root_scope_->FindVar(name);

      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      auto* ptr = root_scope_->Var(name + "pin");
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* pin_tensor = ptr->GetMutable<LoDTensor>();
T
Thunderbrook 已提交
85
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
86 87
      pin_tensor->mutable_data<float>(tensor->dims(),
                                      platform::CUDAPinnedPlace());
T
Thunderbrook 已提交
88 89 90 91
#endif
#ifdef PADDLE_WITH_XPU
      pin_tensor->mutable_data<float>(tensor->dims(), platform::CPUPlace());
#endif
T
Thunderbrook 已提交
92 93 94
    }
  }
#endif
95 96 97 98 99 100 101 102 103 104 105 106
}

void PullDenseWorker::Wait(std::vector<::std::future<int32_t>>* status_vec) {
  for (auto& t : *status_vec) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(WARNING) << "Current Pull Dense Thread Failed Times"
                   << ++pull_dense_fail_times_;
    }
  }

107
  size_t MAX_FAIL_NUM = 20;
108
  if (pull_dense_fail_times_ > MAX_FAIL_NUM) {
109 110
    PADDLE_THROW(platform::errors::Fatal(
        "Pull dense failed more than %d times.", MAX_FAIL_NUM));
111 112
    exit(-1);
  }
113
  status_vec->resize(0);
T
Thunderbrook 已提交
114
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  for (size_t i = 0; i < places_.size(); ++i) {
    // for (auto& v : dense_value_names_) {
    //  for (auto& name : v.second) {
    for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
         ++x) {
      uint64_t tid = static_cast<uint64_t>(
          dwp_param_.program_config(0).pull_dense_table_id(x));
      for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
        auto& name = dense_value_names_[tid][j];

        Variable* pin_var = root_scope_->FindVar(name + "pin");
        LoDTensor* pin_tensor = pin_var->GetMutable<LoDTensor>();
        float* pin_w = pin_tensor->data<float>();
        Variable* var = thread_scopes_[i]->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        float* w = tensor->data<float>();
T
Thunderbrook 已提交
132
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
133 134 135
        memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, places_[i]), w,
                     platform::CUDAPinnedPlace(), pin_w,
                     sizeof(float) * tensor->numel(), copy_streams_[i]);
T
Thunderbrook 已提交
136 137 138 139 140 141
#endif
#ifdef PADDLE_WITH_XPU
        memory::Copy(BOOST_GET_CONST(platform::XPUPlace, places_[i]), w,
                     platform::CPUPlace(), pin_w,
                     sizeof(float) * tensor->numel());
#endif
T
Thunderbrook 已提交
142 143 144 145
      }
    }
  }
#endif
146 147 148 149 150 151 152 153 154
}

void PullDenseWorker::Stop() {
  if (running_) {
    running_ = false;
    t_.join();
  }
}

155 156
void PullDenseWorker::PullDense(bool force_update) {
  pull_dense_status_.resize(0);
157 158
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
159 160 161
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    if (force_update || CheckUpdateParam(tid)) {
T
Thunderbrook 已提交
162
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
163
      VLOG(3) << "pull dense " << force_update << " " << tid;
164
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
T
Thunderbrook 已提交
165 166 167 168 169
                                     &pull_dense_status_, false);
#else
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
                                     &pull_dense_status_, true);
#endif
170 171 172 173 174 175 176 177
      ResetThreadVersion(tid);
    }
  }
  if (pull_dense_status_.size() != 0) {
    Wait(&pull_dense_status_);
  }
}

178 179
int PullDenseWorker::Start() {
  running_ = true;
180 181
  // before training, we can pull dense from pserver first.
  PullDense(true);
182 183 184 185 186 187
  t_ = std::thread(&PullDenseWorker::Run, this);
  return 0;
}

void PullDenseWorker::Run() {
  while (running_) {
188
    PullDense(false);
D
dongdaxiang 已提交
189
#ifndef _WIN32
190
    usleep(sleep_time_ms_ * 1000);
D
dongdaxiang 已提交
191
#endif
192 193 194 195 196 197 198 199 200 201 202 203 204
  }
}

void PullDenseWorker::IncreaseThreadVersion(int thread_id, uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  training_versions_[table_id][thread_id]++;
}

bool PullDenseWorker::CheckUpdateParam(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  auto& version = training_versions_[table_id];
  current_version_[table_id] =
      *(std::min_element(version.begin(), version.end()));
205 206
  if (current_version_[table_id] - last_versions_[table_id] <
      static_cast<size_t>(threshold_)) {
207 208 209 210 211 212 213 214 215 216
    return false;
  }
  return true;
}

void PullDenseWorker::ResetThreadVersion(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  last_versions_[table_id] = current_version_[table_id];
}

217 218 219 220 221 222 223 224 225 226 227
int PullDenseWorker::GetThreadIdByScope(const Scope* scope) {
  if (scope_to_thread_id_.find(scope) != scope_to_thread_id_.end()) {
    return scope_to_thread_id_[scope];
  }
  return -1;
}

void PullDenseWorker::SetThreadIdByScope(const Scope* scope, int tid) {
  scope_to_thread_id_[scope] = tid;
}

T
Thunderbrook 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
void PullDenseWorker::MergeDenseParam() {
  for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++x) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(x));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];

      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scopes_[0]->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      TensorCopy((*tensor), root_tensor->place(), root_tensor);
    }
  }
}

245 246
}  // namespace framework
}  // namespace paddle