logical_kernel.cc 5.8 KB
Newer Older
H
houj04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/logical_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void LogicalNotKernel(const Context& ctx,
                      const DenseTensor& x,
                      DenseTensor* out) {
  ctx.template Alloc<T>(out);
  int r =
      xpu::logical_not(ctx.x_context(), x.data<T>(), out->data<T>(), x.numel());
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "logical_not");
}
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

template <typename T, typename XPUType>
void LogicalBinaryKernel(
    const XPUContext& dev_ctx,
    const DenseTensor& x,
    const DenseTensor& y,
    DenseTensor* out,
    std::function<int(
        xpu::Context*, const XPUType*, const XPUType*, XPUType*, int64_t)> func,
    std::string funcname = "unknown") {
  dev_ctx.template Alloc<T>(out);

  int r = xpu::SUCCESS;
  const auto* x_data = x.data<T>();
  const auto* y_data = y.data<T>();
  auto* out_data = out->data<T>();

  if (x.numel() == out->numel() && y.numel() == out->numel()) {
    r = func(dev_ctx.x_context(),
             reinterpret_cast<const XPUType*>(x_data),
             reinterpret_cast<const XPUType*>(y_data),
             reinterpret_cast<XPUType*>(out_data),
             out->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, funcname);
    return;
  }

  // x or y need to do broadcast
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  int max_dim = std::max(x_dims.size(), y_dims.size());
  int axis = std::abs(x_dims.size() - y_dims.size());

  std::vector<int64_t> x_dims_vec(max_dim, 1);
  std::vector<int64_t> y_dims_vec(max_dim, 1);
  if (x_dims.size() == max_dim) {
    for (int i = 0; i < max_dim; i++) {
      x_dims_vec[i] = x_dims[i];
    }
  } else {
    for (int i = 0; i < x_dims.size(); i++) {
      x_dims_vec[i + axis] = x_dims[i];
    }
  }
  if (y_dims.size() == max_dim) {
    for (int i = 0; i < max_dim; i++) {
      y_dims_vec[i] = y_dims[i];
    }
  } else {
    for (int i = 0; i < y_dims.size(); i++) {
      y_dims_vec[i + axis] = y_dims[i];
    }
  }
  if (x_dims_vec.size() == 0) {
    x_dims_vec = std::vector<int64_t>({1});
  }

  if (y_dims_vec.size() == 0) {
    y_dims_vec = std::vector<int64_t>({1});
  }

  bool is_x_need_broadcast = false;
  bool is_y_need_broadcast = false;
  auto out_vec = phi::vectorize(out->dims());
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_vec[i] != out_vec[i]) {
      is_x_need_broadcast = true;
      break;
    }
  }
  for (int i = 0; i < max_dim; i++) {
    if (y_dims_vec[i] != out_vec[i]) {
      is_y_need_broadcast = true;
      break;
    }
  }

  auto xpu_context = dev_ctx.x_context();
  xpu::ctx_guard RAII_GUARD(xpu_context);
  if (is_x_need_broadcast) {
    T* x_data_broadcast = RAII_GUARD.alloc_l3_or_gm<T>(out->numel());
    r = xpu::broadcast<XPUType>(xpu_context,
                                reinterpret_cast<const XPUType*>(x_data),
                                reinterpret_cast<XPUType*>(x_data_broadcast),
                                x_dims_vec,
                                out_vec);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast");
    x_data = x_data_broadcast;
  }
  if (is_y_need_broadcast) {
    T* y_data_broadcast = RAII_GUARD.alloc_l3_or_gm<T>(out->numel());
    r = xpu::broadcast<XPUType>(xpu_context,
                                reinterpret_cast<const XPUType*>(y_data),
                                reinterpret_cast<XPUType*>(y_data_broadcast),
                                y_dims_vec,
                                out_vec);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast");
    y_data = y_data_broadcast;
  }

  r = func(xpu_context,
           reinterpret_cast<const XPUType*>(x_data),
           reinterpret_cast<const XPUType*>(y_data),
           reinterpret_cast<XPUType*>(out_data),
           out->numel());
  PADDLE_ENFORCE_XDNN_SUCCESS(r, funcname);
}

template <typename T, typename Context>
void LogicalAndKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  return LogicalBinaryKernel<T, XPUType>(
      dev_ctx, x, y, out, xpu::logical_and<XPUType>, "logical_and");
}

template <typename T, typename Context>
void LogicalOrKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  return LogicalBinaryKernel<T, XPUType>(
      dev_ctx, x, y, out, xpu::logical_or<XPUType>, "logical_or");
}

template <typename T, typename Context>
void LogicalXorKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  return LogicalBinaryKernel<T, XPUType>(
      dev_ctx, x, y, out, xpu::logical_xor<XPUType>, "logical_xor");
}
H
houj04 已提交
168 169 170
}  // namespace phi

PD_REGISTER_KERNEL(logical_not, XPU, ALL_LAYOUT, phi::LogicalNotKernel, bool) {}
171 172 173
PD_REGISTER_KERNEL(logical_and, XPU, ALL_LAYOUT, phi::LogicalAndKernel, bool) {}
PD_REGISTER_KERNEL(logical_or, XPU, ALL_LAYOUT, phi::LogicalOrKernel, bool) {}
PD_REGISTER_KERNEL(logical_xor, XPU, ALL_LAYOUT, phi::LogicalXorKernel, bool) {}