unique_kernel.cc 4.8 KB
Newer Older
C
csy0225 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include <climits>

C
csy0225 已提交
17
#include "paddle/phi/kernels/unique_kernel.h"
18

C
csy0225 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"
#include "paddle/phi/kernels/funcs/unique_functor.h"

namespace phi {

template <typename T, typename Context>
void UniqueKernel(const Context& context,
                  const DenseTensor& x,
                  bool return_index,
                  bool return_inverse,
                  bool return_counts,
                  const std::vector<int>& axis,
                  DataType dtype,
                  DenseTensor* out,
                  DenseTensor* indices,
                  DenseTensor* index,
                  DenseTensor* counts) {
  bool is_sorted = true;
  UniqueRawKernel<T, Context>(context,
                              x,
                              return_index,
                              return_inverse,
                              return_counts,
                              axis,
                              dtype,
                              is_sorted,
                              out,
                              indices,
                              index,
                              counts);
}

template <typename T, typename Context>
void UniqueRawKernel(const Context& context,
                     const DenseTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     bool is_sorted,
                     DenseTensor* out,
                     DenseTensor* indices,
                     DenseTensor* index,
                     DenseTensor* counts) {
  if (dtype == phi::DataType::INT32) {
    PADDLE_ENFORCE_LE(
        x.numel(),
        INT_MAX,
        phi::errors::InvalidArgument(
            "The number of elements in Input(X) should be less than or "
            "equal to INT_MAX, but received num is %d. Please set `dtype` to "
            "int64.",
            x.numel()));
  }
  if (!is_sorted) {
    phi::VisitDataType(
        dtype,
        phi::funcs::UniqueOpFunctor<Context, T>(context, out, index, &x));
    return;
  }

  if (x.numel() == 0) {
    context.template Alloc<T>(out);
    return;
  }
  if (axis.empty()) {
    phi::VisitDataTypeTiny(
        dtype,
        phi::funcs::UniqueFlattendTensorFunctor<Context, T>(context,
                                                            x,
                                                            out,
                                                            indices,
                                                            index,
                                                            counts,
                                                            return_index,
                                                            return_inverse,
                                                            return_counts));
  } else {
    int axis_value = axis[0];
101
    axis_value = (axis_value == -1) ? (x.dims().size() - 1) : axis_value;
C
csy0225 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    phi::VisitDataTypeTiny(
        dtype,
        phi::funcs::UniqueDimFunctor<Context, T>(context,
                                                 x,
                                                 out,
                                                 indices,
                                                 index,
                                                 counts,
                                                 axis_value,
                                                 return_index,
                                                 return_inverse,
                                                 return_counts));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(unique,
                   CPU,
                   ALL_LAYOUT,
                   phi::UniqueKernel,
                   float,
                   double,
                   int32_t,
                   int64_t) {}

PD_REGISTER_KERNEL(unique_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::UniqueRawKernel,
                   float,
                   double,
                   int32_t,
                   int64_t) {}