Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
fc647168
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fc647168
编写于
3月 13, 2019
作者:
qnqinan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix a bug in dwconv filter align function
上级
6ff252ef
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
317 addition
and
1 deletion
+317
-1
src/fpga/V1/filter.cpp
src/fpga/V1/filter.cpp
+1
-1
test/fpga/test_mobilenet_api.cpp
test/fpga/test_mobilenet_api.cpp
+158
-0
test/fpga/test_yolo_api.cpp
test/fpga/test_yolo_api.cpp
+158
-0
未找到文件。
src/fpga/V1/filter.cpp
浏览文件 @
fc647168
...
...
@@ -316,7 +316,7 @@ void align_element_n(int16_t **data_in, int num, int height, int width) {
}
*
data_in
=
data_tmp
;
free
(
tmp
);
f
pga_f
ree
(
tmp
);
}
}
void
quantize_to_fp16
(
float
**
data_in
,
int
num
,
int
height
,
int
width
,
...
...
test/fpga/test_mobilenet_api.cpp
0 → 100644
浏览文件 @
fc647168
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using
namespace
paddle_mobile
;
using
namespace
paddle_mobile
::
fpga
;
static
const
char
*
g_image
=
"../images/mobilenet_txtdata/1.txt"
;
static
const
char
*
g_model
=
"../models/keycurve_l2_regular4_model/__model__"
;
static
const
char
*
g_param
=
"../models/keycurve_l2_regular4_model/model.params"
;
void
readStream
(
std
::
string
filename
,
float
*
buf
)
{
std
::
ifstream
in
;
in
.
open
(
filename
,
std
::
ios
::
in
);
if
(
!
in
.
is_open
())
{
std
::
cout
<<
"open File Failed."
<<
std
::
endl
;
return
;
}
int
i
=
0
;
while
(
!
in
.
eof
())
{
in
>>
buf
[
i
];
i
++
;
}
in
.
close
();
}
signed
char
float_to_int8
(
float
fdata
)
{
if
(
fdata
<
0.0
)
{
fdata
-=
0.5
;
}
else
{
fdata
+=
0.5
;
}
return
(
signed
char
)
fdata
;
}
void
quantize
(
float
**
data_in
,
int
data_size
)
{
float
*
tmp
=
*
data_in
;
signed
char
*
tmp_data
=
(
signed
char
*
)
paddle_mobile
::
fpga
::
fpga_malloc
(
data_size
*
sizeof
(
char
));
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
float_to_int8
((
*
data_in
)[
i
]
+
128
);
}
*
data_in
=
(
float
*
)
tmp_data
;
// NOLINT
paddle_mobile
::
fpga
::
fpga_free
(
tmp
);
}
void
convert_to_chw
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
,
float
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
void
dump_stride_float
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
data
.
data
());
int
c
=
(
input_tensor
.
shape
)[
1
];
int
h
=
(
input_tensor
.
shape
)[
2
];
int
w
=
(
input_tensor
.
shape
)[
3
];
int
n
=
(
input_tensor
.
shape
)[
0
];
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
c
*
h
*
w
*
sizeof
(
float
)));
convert_to_chw
(
&
data_ptr
,
c
,
h
,
w
,
data_tmp
);
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
datasize
=
abs
(
c
*
h
*
w
*
n
);
if
(
datasize
==
0
)
{
std
::
cout
<<
"wrong dump data size"
<<
std
::
endl
;
return
;
}
for
(
int
i
=
0
;
i
<
datasize
;
i
++
)
{
result
=
data_tmp
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
}
void
dump_stride
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
if
(
input_tensor
.
dtypeid
==
typeid
(
float
))
{
dump_stride_float
(
filename
,
input_tensor
);
}
else
{
std
::
cout
<<
"only support dumping float data"
<<
std
::
endl
;
}
}
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model
;
config
.
param_file
=
g_param
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
int
main
()
{
open_device
();
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
int
img_length
=
256
*
416
*
3
;
auto
img
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length
*
sizeof
(
float
)));
readStream
(
g_image
,
img
);
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img
;
t_img
.
dtype
=
FLOAT32
;
t_img
.
dtypeid
=
typeid
(
float
);
// quantize(&img, img_length);
// t_img.dtype = INT8;
// t_img.dtypeid = typeid(int8_t);
t_img
.
layout
=
LAYOUT_HWC
;
t_img
.
shape
=
std
::
vector
<
int
>
({
1
,
256
,
416
,
3
});
t_img
.
name
=
"Image information"
;
t_img
.
data
.
Reset
(
img
,
img_length
*
sizeof
(
float
));
// t_img.data.Reset(img, img_length * sizeof(int8_t));
predictor
->
FeedPaddleTensors
({
t_img
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
PaddleTensor
>
v
;
// No need to initialize v
predictor
->
FetchPaddleTensors
(
&
v
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v
.
size
()
<<
std
::
endl
;
for
(
int
fetchNum
=
0
;
fetchNum
<
v
.
size
();
fetchNum
++
)
{
std
::
string
dumpName
=
"mobilenet_api_fetch_"
+
std
::
to_string
(
fetchNum
);
dump_stride
(
dumpName
,
v
[
fetchNum
]);
}
return
0
;
}
test/fpga/test_yolo_api.cpp
0 → 100644
浏览文件 @
fc647168
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using
namespace
paddle_mobile
;
using
namespace
paddle_mobile
::
fpga
;
static
const
char
*
g_image
=
"../images/yolo_test_txtimg/1.txt"
;
static
const
char
*
g_model
=
"../models/yolo_bn_l2_model/__model__"
;
static
const
char
*
g_param
=
"../models/yolo_bn_l2_model/model.params"
;
void
readStream
(
std
::
string
filename
,
float
*
buf
)
{
std
::
ifstream
in
;
in
.
open
(
filename
,
std
::
ios
::
in
);
if
(
!
in
.
is_open
())
{
std
::
cout
<<
"open File Failed."
<<
std
::
endl
;
return
;
}
int
i
=
0
;
while
(
!
in
.
eof
())
{
in
>>
buf
[
i
];
i
++
;
}
in
.
close
();
}
signed
char
float_to_int8
(
float
fdata
)
{
if
(
fdata
<
0.0
)
{
fdata
-=
0.5
;
}
else
{
fdata
+=
0.5
;
}
return
(
signed
char
)
fdata
;
}
void
quantize
(
float
**
data_in
,
int
data_size
)
{
float
*
tmp
=
*
data_in
;
signed
char
*
tmp_data
=
(
signed
char
*
)
paddle_mobile
::
fpga
::
fpga_malloc
(
data_size
*
sizeof
(
char
));
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
float_to_int8
((
*
data_in
)[
i
]
+
128
);
}
*
data_in
=
(
float
*
)
tmp_data
;
// NOLINT
paddle_mobile
::
fpga
::
fpga_free
(
tmp
);
}
void
convert_to_chw
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
,
float
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
void
dump_stride_float
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
data
.
data
());
int
c
=
(
input_tensor
.
shape
)[
1
];
int
h
=
(
input_tensor
.
shape
)[
2
];
int
w
=
(
input_tensor
.
shape
)[
3
];
int
n
=
(
input_tensor
.
shape
)[
0
];
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
c
*
h
*
w
*
sizeof
(
float
)));
convert_to_chw
(
&
data_ptr
,
c
,
h
,
w
,
data_tmp
);
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
datasize
=
abs
(
c
*
h
*
w
*
n
);
if
(
datasize
==
0
)
{
std
::
cout
<<
"wrong dump data size"
<<
std
::
endl
;
return
;
}
for
(
int
i
=
0
;
i
<
datasize
;
i
++
)
{
result
=
data_tmp
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
}
void
dump_stride
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
if
(
input_tensor
.
dtypeid
==
typeid
(
float
))
{
dump_stride_float
(
filename
,
input_tensor
);
}
else
{
std
::
cout
<<
"only support dumping float data"
<<
std
::
endl
;
}
}
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model
;
config
.
param_file
=
g_param
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
int
main
()
{
open_device
();
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
int
img_length
=
256
*
416
*
3
;
auto
img
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length
*
sizeof
(
float
)));
readStream
(
g_image
,
img
);
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img
;
// t_img.dtype = FLOAT32;
// t_img.dtypeid = typeid(float);
quantize
(
&
img
,
img_length
);
t_img
.
dtype
=
INT8
;
t_img
.
dtypeid
=
typeid
(
int8_t
);
t_img
.
layout
=
LAYOUT_HWC
;
t_img
.
shape
=
std
::
vector
<
int
>
({
1
,
256
,
416
,
3
});
t_img
.
name
=
"Image information"
;
// t_img.data.Reset(img, img_length * sizeof(float));
t_img
.
data
.
Reset
(
img
,
img_length
*
sizeof
(
int8_t
));
predictor
->
FeedPaddleTensors
({
t_img
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
PaddleTensor
>
v
;
// No need to initialize v
predictor
->
FetchPaddleTensors
(
&
v
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v
.
size
()
<<
std
::
endl
;
for
(
int
fetchNum
=
0
;
fetchNum
<
v
.
size
();
fetchNum
++
)
{
std
::
string
dumpName
=
"yolo_api_fetch_"
+
std
::
to_string
(
fetchNum
);
dump_stride
(
dumpName
,
v
[
fetchNum
]);
}
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录