提交 f94e8abf 编写于 作者: Y yangfei963158659 提交者: GitHub

Merge pull request #1329 from yangfei963158659/develop

imp resnet and squeezenet
...@@ -56,6 +56,7 @@ class CLImage { ...@@ -56,6 +56,7 @@ class CLImage {
tensor_dims_ = dim; tensor_dims_ = dim;
} }
bool isInit() { return initialized_; }
/* /*
* need call SetTensorData first * need call SetTensorData first
* *
......
...@@ -55,6 +55,9 @@ REGISTER_FUSION_MATCHER(fusion_conv_bn_add_relu, ...@@ -55,6 +55,9 @@ REGISTER_FUSION_MATCHER(fusion_conv_bn_add_relu,
#ifdef PADDLE_MOBILE_CPU #ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp); REGISTER_OPERATOR_CPU(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif #endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA #ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp); REGISTER_OPERATOR_FPGA(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif #endif
......
...@@ -77,15 +77,25 @@ void BatchNormKernel<GPU_CL, float>::Compute( ...@@ -77,15 +77,25 @@ void BatchNormKernel<GPU_CL, float>::Compute(
auto new_scale = param.NewScale()->GetCLImage(); auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage(); auto new_bias = param.NewBias()->GetCLImage();
const int out_width = default_work_size[1]; const int out_width = default_work_size[1];
DLOG << *param.InputX();
clSetKernelArg(kernel, 1, sizeof(int), &out_width); DLOG << *param.NewBias();
clSetKernelArg(kernel, 2, sizeof(cl_mem), &input); DLOG << *param.NewScale();
clSetKernelArg(kernel, 3, sizeof(cl_mem), &new_scale); DLOG << default_work_size[0];
clSetKernelArg(kernel, 4, sizeof(cl_mem), &new_bias); DLOG << default_work_size[1];
clSetKernelArg(kernel, 5, sizeof(cl_mem), &out); DLOG << default_work_size[2];
DLOG << out_width;
// cl_event out_event = param.OutputY()->GetClEvent(); DLOG << *param.OutputY();
// cl_event wait_event = param.InputX()->GetClEvent(); cl_int status;
clSetKernelArg(kernel, 0, sizeof(cl_int), &out_width);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 3, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 4, sizeof(cl_mem), &out);
CL_CHECK_ERRORS(status);
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL, clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
default_work_size.data(), NULL, 0, NULL, NULL); default_work_size.data(), NULL, 0, NULL, NULL);
} }
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define BATCH_NORM
#define BIASE
#define RELU
#include "conv_kernel.inc.cl"
...@@ -924,6 +924,387 @@ __kernel void conv_5x5(__private const int global_size_dim0, ...@@ -924,6 +924,387 @@ __kernel void conv_5x5(__private const int global_size_dim0,
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output); write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
} }
__kernel void convBNAdd_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
half4 output = (half4)0.0f;
half4 input[9];
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
input[0] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
/*
for (int j = 0; j < 9; ++j) {
int2 pos_of_weight;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
}
*/
int j = 0;
int2 pos_of_weight;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 1;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 2;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 3;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 4;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 5;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 6;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 7;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 8;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef BIASE
output += read_imageh(bias, sampler, (int2)(out_c * global_size_dim1 + out_w, out_nh));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void convBNAdd_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
half4 output = 0.0f;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
half4 input = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
/*
output.x = dot(input, weight0);
output.y = dot(input, weight1);
output.z = dot(input, weight2);
output.w = dot(input, weight3);
*/
output = mad(input.x, weight0, output);
output = mad(input.y, weight1, output);
output = mad(input.z, weight2, output);
output = mad(input.w, weight3, output);
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef BIASE
output += read_imageh(bias, sampler, (int2)(out_c * global_size_dim1 + out_w, out_nh));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVBNADDRELU_OP
#include "operators/kernel/conv_bn_add_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvBNAddReluKernel<GPU_CL, float>::Init(
FusionConvBNAddReluParam<GPU_CL> *param) {
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
const framework::CLImage *mean = param->InputMean();
const framework::CLImage *variance = param->InputVariance();
const framework::CLImage *scale = param->InputScale();
const framework::CLImage *bias = param->InputBias();
const float epsilon = param->Epsilon();
const int C = mean->numel();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
float *new_scale_ptr = new float[C];
float *new_bias_ptr = new float[C];
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
framework::CLImage *new_scale = new framework::CLImage();
// for (int j = 0; j < C; ++j) {
// DLOG << " new scale - " << j << new_scale_ptr[j];
// }
//
// for (int j = 0; j < C; ++j) {
// DLOG << " new bias - " << j << new_bias_ptr[j];
// }
new_scale->SetTensorData(new_scale_ptr, variance->dims());
new_scale->InitCLImage(this->cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
// DLOG << " climage - y bias: " << *(param->Bias());
//
// DLOG << " climage - new scale: " << *new_scale;
framework::CLImage *new_bias = new framework::CLImage();
new_bias->SetTensorData(new_bias_ptr, variance->dims());
new_bias->InitCLImage(this->cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
// DLOG << " climage - new bias: " << *new_bias;
//
// DLOG << " climage - filter: " << *(param->Filter());
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
delete[](new_scale_ptr);
delete[](new_bias_ptr);
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
static_cast<int>(param->Paddings()[1]);
param->SetOffset(offset);
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("convBNAdd_1x1", "conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
param->Filter()->InitDWImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("depth_convBNAdd_3x3",
"conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu depth_conv_3x3";
} else if (param->Filter()->dims()[2] == 3 &&
param->Filter()->dims()[3] == 3) {
param->Filter()->InitCLImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("convBNAdd_3x3", "conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu conv_3x3";
} else {
PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
}
return true;
}
template <>
void ConvBNAddReluKernel<GPU_CL, float>::Compute(
const FusionConvBNAddReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto biase = param.Bias()->GetCLImage();
auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << *param.Input();
// DLOG << " output dim " <<* param.Output();
// DLOG << " filter dim " << *param.Filter();
// DLOG<<*param.Bias();
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
template class ConvBNAddReluKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. ///* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
You may obtain a copy of the License at // You may obtain a copy of the License at
//
http://www.apache.org/licenses/LICENSE-2.0 // http://www.apache.org/licenses/LICENSE-2.0
//
Unless required by applicable law or agreed to in writing, software // Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, // distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
limitations under the License. */ // limitations under the License. */
//
#ifdef DEPTHWISECONV_OP //#ifdef DEQUANT_OP
//
#include "operators/kernel/depthwise_conv_kernel.h" //#include "operators/kernel/dequantize_kernel.h"
#include "operators/kernel/central-arm-func/depthwise_conv_arm_func.h" //
// namespace paddle_mobile {
namespace paddle_mobile { // namespace operators {
namespace operators { //
// template <>
template <> // bool DequantizeKernel<GPU_CL, float>::Init(DequantizeParam<GPU_CL> *param) {
bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) { // DLOG << " depthwise conv kernel init begin ";
DLOG << " depthwise conv kernel init begin "; // PADDLE_MOBILE_ENFORCE(
PADDLE_MOBILE_ENFORCE( // param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Filter()->dims()[2] == param->Filter()->dims()[3] && // param->Paddings()[0] == param->Paddings()[1],
param->Paddings()[0] == param->Paddings()[1], // "need equal");
"need equal"); // param->Filter()->InitCLImage(cl_helper_.CLContext(),
param->Filter()->InitCLImage(cl_helper_.CLContext(), // this->cl_helper_.CLCommandQueue());
this->cl_helper_.CLCommandQueue()); // int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 - // static_cast<int>(param->Paddings()[1]);
static_cast<int>(param->Paddings()[1]); // param->SetOffset(offset);
param->SetOffset(offset); // this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl"); // DLOG << " depthwise conv kernel init end ";
DLOG << " depthwise conv kernel init end "; // return true;
return true; //}
} //
// template <>
template <> // void DequantizeKernel<GPU_CL, float>::Compute(
void DepthwiseConvKernel<GPU_CL, float>::Compute( // const DequantizeParam<GPU_CL> &param) {
const ConvParam<GPU_CL> &param) { // auto kernel = this->cl_helper_.KernelAt(0);
auto kernel = this->cl_helper_.KernelAt(0); // auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output()); // int c_block = default_work_size[0];
int c_block = default_work_size[0]; // int w = default_work_size[1];
int w = default_work_size[1]; // int nh = default_work_size[2];
int nh = default_work_size[2]; // auto input = param.Input()->GetCLImage();
auto input = param.Input()->GetCLImage(); // auto filter = param.Filter()->GetCLImage();
auto filter = param.Filter()->GetCLImage(); // auto output = param.Output()->GetCLImage();
auto output = param.Output()->GetCLImage(); // int stride = param.Strides()[0];
int stride = param.Strides()[0]; // int offset = param.Offset();
int offset = param.Offset(); // int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>( // param.Input()->Converter())
param.Input()->Converter()) // ->GetCBlock();
->GetCBlock(); // int dilation = param.Dilations()[0];
int dilation = param.Dilations()[0]; //
// int input_width = param.Input()->dims()[3];
int input_width = param.Input()->dims()[3]; // int input_height = param.Input()->dims()[2];
int input_height = param.Input()->dims()[2]; // int output_width = param.Output()->dims()[3];
int output_width = param.Output()->dims()[3]; // int output_height = param.Output()->dims()[2];
int output_height = param.Output()->dims()[2]; //
// cl_int status;
cl_int status; //
// status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block); // status = clSetKernelArg(kernel, 1, sizeof(int), &w);
status = clSetKernelArg(kernel, 1, sizeof(int), &w); // status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh); // status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input); // status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter); // status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output); // status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
status = clSetKernelArg(kernel, 6, sizeof(int), &stride); // status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
status = clSetKernelArg(kernel, 7, sizeof(int), &offset); // status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
status = clSetKernelArg(kernel, 8, sizeof(int), &input_c); // status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
status = clSetKernelArg(kernel, 9, sizeof(int), &dilation); // status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
status = clSetKernelArg(kernel, 10, sizeof(int), &input_width); // status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_height); // status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
status = clSetKernelArg(kernel, 12, sizeof(int), &output_width); // status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_height); //
// CL_CHECK_ERRORS(status);
CL_CHECK_ERRORS(status); //
// // cl_event out_event = param.Output()->GetClEvent();
// cl_event out_event = param.Output()->GetClEvent(); // // cl_event wait_event = param.Input()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent(); //
// status = clEnqueueNDRangeKernel(
status = clEnqueueNDRangeKernel( // this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL, // NULL, default_work_size.data(), NULL, 0, NULL, NULL);
default_work_size.data(), NULL, 0, NULL, NULL); //
// CL_CHECK_ERRORS(status);
CL_CHECK_ERRORS(status); //}
} //
// template class DepthwiseConvKernel<GPU_CL, float>;
template class DepthwiseConvKernel<GPU_CL, float>; //
//} // namespace operators
} // namespace operators //} // namespace paddle_mobile
} // namespace paddle_mobile //
//#endif
#endif
...@@ -24,7 +24,11 @@ bool ElementwiseAddKernel<GPU_CL, float>::Init( ...@@ -24,7 +24,11 @@ bool ElementwiseAddKernel<GPU_CL, float>::Init(
ElementwiseAddParam<GPU_CL> *param) { ElementwiseAddParam<GPU_CL> *param) {
DLOG << "-----init add-----"; DLOG << "-----init add-----";
CLImage *bias = (CLImage *)(param->InputY()); CLImage *bias = (CLImage *)(param->InputY());
bias->InitCLImage(cl_helper_.CLContext(), this->cl_helper_.CLCommandQueue()); if (!bias->isInit()) {
bias->InitCLImage(cl_helper_.CLContext(),
this->cl_helper_.CLCommandQueue());
}
DLOG << " bias: " << *bias; DLOG << " bias: " << *bias;
if (bias->dims().size() == 4) { if (bias->dims().size() == 4) {
this->cl_helper_.AddKernel("elementwise_add", "elementwise_add_kernel.cl"); this->cl_helper_.AddKernel("elementwise_add", "elementwise_add_kernel.cl");
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册