Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
f8ba0f54
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f8ba0f54
编写于
9月 20, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
9月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into develop
上级
56687070
bcafbb31
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
2006 addition
and
5 deletion
+2006
-5
python/tools/mdl2fluid/float2halffloat.py
python/tools/mdl2fluid/float2halffloat.py
+70
-0
python/tools/mdl2fluid/framework.proto
python/tools/mdl2fluid/framework.proto
+176
-0
python/tools/mdl2fluid/framework_pb2.py
python/tools/mdl2fluid/framework_pb2.py
+1141
-0
python/tools/mdl2fluid/loader.py
python/tools/mdl2fluid/loader.py
+18
-0
python/tools/mdl2fluid/mdl2fluid.py
python/tools/mdl2fluid/mdl2fluid.py
+335
-0
python/tools/mdl2fluid/model_reader.py
python/tools/mdl2fluid/model_reader.py
+30
-0
python/tools/mdl2fluid/op_types.py
python/tools/mdl2fluid/op_types.py
+123
-0
python/tools/mdl2fluid/swicher.py
python/tools/mdl2fluid/swicher.py
+92
-0
src/fpga/api.cpp
src/fpga/api.cpp
+21
-5
未找到文件。
python/tools/mdl2fluid/float2halffloat.py
0 → 100644
浏览文件 @
f8ba0f54
# encoding:utf-8
import
math
import
re
def
Real2HalfFloat
(
data
):
MINNUM
=
-
65536
MAXNUM
=
65535
FloatVal
=
0
if
data
:
if
data
<
MINNUM
:
data
=
MINNUM
if
data
>
MAXNUM
:
data
=
MAXNUM
sign
=
0
if
data
<
0
:
sign
=
1
data
=
-
data
exp
=
math
.
floor
((
math
.
log2
(
data
)))
expout
=
exp
+
16
Mantial
=
round
(
data
/
pow
(
2
,
exp
-
10
))
-
1024
if
expout
<=
0
:
FloatVal
=
0
else
:
FloatVal
=
sign
*
32768
+
expout
*
1024
+
Mantial
return
FloatVal
def
ReadCfloatData
(
sourcefile
):
input
=
[]
with
open
(
sourcfile
,
'r'
)
as
f
:
for
line
in
f
.
readlines
():
line
=
line
.
strip
()
line
=
re
.
sub
(
'\s+'
,
' '
,
line
)
# 两个数字间多个空格
input
.
append
(
line
.
split
(
' '
))
destfile
=
sourcefile
.
replace
(
'.dat'
,
''
)
destfile
=
destfile
.
replace
(
'.txt'
,
''
)
destfile
+=
'Out.dat'
with
open
(
destfile
,
'w'
)
as
fw
:
for
i
in
range
(
len
(
input
)):
if
len
(
input
[
i
])
==
2
:
real
=
Real2HalfFloat
(
float
(
input
[
i
][
0
]))
imag
=
Real2HalfFloat
(
float
(
input
[
i
][
1
]))
result
=
real
*
65536
+
imag
if
imag
and
not
real
:
fw
.
write
(
'0x0000'
+
"%X"
%
result
+
'
\n
'
)
elif
not
imag
and
not
real
:
fw
.
write
(
'0x00000000'
+
'
\n
'
)
else
:
fw
.
write
(
'0x'
+
"%X"
%
result
+
'
\n
'
)
elif
len
(
input
[
i
])
==
1
:
result
=
Real2HalfFloat
(
float
(
input
[
i
][
0
]))
if
result
:
fw
.
write
(
'0x'
+
"%X"
%
result
+
'
\n
'
)
else
:
fw
.
write
(
'0x0000'
+
'
\n
'
)
if
__name__
==
'__main__'
:
print
(
'Tips: Input number 0 if you want to exit!
\n
'
)
while
True
:
sourcfile
=
input
(
"input source file:
\n
"
)
if
sourcfile
is
'0'
:
break
ReadCfloatData
(
sourcfile
)
print
(
'Transfer Success!'
)
python/tools/mdl2fluid/framework.proto
0 → 100644
浏览文件 @
f8ba0f54
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
syntax
=
"proto2"
;
option
optimize_for
=
LITE_RUNTIME
;
package
paddle_mobile
.
framework.proto
;
enum
AttrType
{
INT
=
0
;
FLOAT
=
1
;
STRING
=
2
;
INTS
=
3
;
FLOATS
=
4
;
STRINGS
=
5
;
BOOLEAN
=
6
;
BOOLEANS
=
7
;
BLOCK
=
8
;
LONG
=
9
;
}
// OpDesc describes an instance of a C++ framework::OperatorBase
// derived class type.
message
OpDesc
{
message
Attr
{
required
string
name
=
1
;
required
AttrType
type
=
2
;
optional
int32
i
=
3
;
optional
float
f
=
4
;
optional
string
s
=
5
;
repeated
int32
ints
=
6
;
repeated
float
floats
=
7
;
repeated
string
strings
=
8
;
optional
bool
b
=
10
;
repeated
bool
bools
=
11
;
optional
int32
block_idx
=
12
;
optional
int64
l
=
13
;
};
message
Var
{
required
string
parameter
=
1
;
repeated
string
arguments
=
2
;
};
required
string
type
=
3
;
repeated
Var
inputs
=
1
;
repeated
Var
outputs
=
2
;
repeated
Attr
attrs
=
4
;
optional
bool
is_target
=
5
[
default
=
false
];
};
// OpProto describes a C++ framework::OperatorBase derived class.
message
OpProto
{
// VarProto describes the C++ type framework::Variable.
message
Var
{
required
string
name
=
1
;
required
string
comment
=
2
;
optional
bool
duplicable
=
3
[
default
=
false
];
optional
bool
intermediate
=
4
[
default
=
false
];
optional
bool
dispensable
=
5
[
default
=
false
];
}
// AttrProto describes the C++ type Attribute.
message
Attr
{
required
string
name
=
1
;
required
AttrType
type
=
2
;
required
string
comment
=
3
;
// If that attribute is generated, it means the Paddle third
// language binding has responsibility to fill that
// attribute. End-User should not set that attribute.
optional
bool
generated
=
4
[
default
=
false
];
}
required
string
type
=
1
;
repeated
Var
inputs
=
2
;
repeated
Var
outputs
=
3
;
repeated
Attr
attrs
=
4
;
required
string
comment
=
5
;
}
message
VarType
{
enum
Type
{
// Pod Types
BOOL
=
0
;
INT16
=
1
;
INT32
=
2
;
INT64
=
3
;
FP16
=
4
;
FP32
=
5
;
FP64
=
6
;
// Other types that may need additional descriptions
LOD_TENSOR
=
7
;
SELECTED_ROWS
=
8
;
FEED_MINIBATCH
=
9
;
FETCH_LIST
=
10
;
STEP_SCOPES
=
11
;
LOD_RANK_TABLE
=
12
;
LOD_TENSOR_ARRAY
=
13
;
PLACE_LIST
=
14
;
READER
=
15
;
CHANNEL
=
16
;
// Any runtime decided variable type is raw
// raw variables should manage their own allocations
// in operators like nccl_op
RAW
=
17
;
TUPLE
=
18
;
}
required
Type
type
=
1
;
message
TensorDesc
{
// Should only be PODType. Is enforced in C++
required
Type
data_type
=
1
;
repeated
int64
dims
=
2
;
// [UNK, 640, 480] is saved as [-1, 640, 480]
}
optional
TensorDesc
selected_rows
=
2
;
message
LoDTensorDesc
{
required
TensorDesc
tensor
=
1
;
optional
int32
lod_level
=
2
[
default
=
0
];
}
optional
LoDTensorDesc
lod_tensor
=
3
;
message
LoDTensorArrayDesc
{
required
TensorDesc
tensor
=
1
;
optional
int32
lod_level
=
2
[
default
=
0
];
}
optional
LoDTensorArrayDesc
tensor_array
=
4
;
message
ReaderDesc
{
repeated
LoDTensorDesc
lod_tensor
=
1
;
}
optional
ReaderDesc
reader
=
5
;
message
ChannelDesc
{
required
Type
data_type
=
1
;
required
int64
capacity
=
2
;
}
optional
ChannelDesc
channel
=
6
;
message
Tuple
{
repeated
Type
element_type
=
1
;
}
optional
Tuple
tuple
=
7
;
}
message
VarDesc
{
required
string
name
=
1
;
required
VarType
type
=
2
;
optional
bool
persistable
=
3
[
default
=
false
];
}
message
BlockDesc
{
required
int32
idx
=
1
;
required
int32
parent_idx
=
2
;
repeated
VarDesc
vars
=
3
;
repeated
OpDesc
ops
=
4
;
optional
int32
forward_block_idx
=
5
[
default
=
-
1
];
}
// Please refer to
// https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md
// for more details.
// TODO(panyx0718): A model can have multiple programs. Need a
// way to distinguish them. Maybe ID or name?
message
ProgramDesc
{
repeated
BlockDesc
blocks
=
1
;
}
python/tools/mdl2fluid/framework_pb2.py
0 → 100644
浏览文件 @
f8ba0f54
此差异已折叠。
点击以展开。
python/tools/mdl2fluid/loader.py
0 → 100644
浏览文件 @
f8ba0f54
import
datetime
import
json
import
os
import
google.protobuf
as
pbg
import
framework_pb2
as
framework_pb2
def
loadmdl
(
json_path
):
print
(
'mdl json path : '
+
json_path
)
with
open
(
json_path
,
'r'
)
as
f
:
json_dick
=
json
.
load
(
f
)
# print(json_dick)
layers
=
(
json_dick
[
'layer'
])
for
layer
in
layers
:
print
(
layer
)
python/tools/mdl2fluid/mdl2fluid.py
0 → 100644
浏览文件 @
f8ba0f54
import
json
import
os
import
framework_pb2
as
framework_pb2
import
op_types
as
types
from
swicher
import
Swichter
import
shutil
def
load_mdl
(
mdl_json_path
):
# print('mdl json path : ' + mdl_json_path)
with
open
(
mdl_json_path
,
'r'
)
as
f
:
return
json
.
load
(
f
)
class
Converter
:
'convert mdlmodel to fluidmodel'
def
__init__
(
self
,
mdl_json_path
):
self
.
mdl_json_path
=
mdl_json_path
print
mdl_json_path
self
.
mdl_json
=
load_mdl
(
self
.
mdl_json_path
)
self
.
program_desc
=
framework_pb2
.
ProgramDesc
()
self
.
weight_list_
=
[]
self
.
deepwise_weight_list_
=
[]
# print(json_dick)
# layers = (json_dick['layer'])
# for layer in layers:
# print(layer)
def
convert
(
self
):
print
'convert begin.....'
# add block_desc
block_desc
=
self
.
program_desc
.
blocks
.
add
()
block_desc
.
idx
=
0
block_desc
.
parent_idx
=
-
1
self
.
package_ops
(
block_desc
)
self
.
package_vars
(
block_desc
)
print
'blocks: '
print
self
.
program_desc
.
blocks
print
'convert end.....'
desc_serialize_to_string
=
self
.
program_desc
.
SerializeToString
()
shutil
.
rmtree
(
'newyolo/'
)
shutil
.
copytree
(
'multiobjects/float32s_nchw_with_head'
,
'newyolo/'
)
f
=
open
(
"newyolo/__model__"
,
"wb"
)
f
.
write
(
desc_serialize_to_string
)
f
.
close
()
def
package_ops
(
self
,
block_desc
):
self
.
add_op_feed
(
block_desc
)
# add ops with layer
if
'layer'
in
self
.
mdl_json
:
layers_
=
self
.
mdl_json
[
'layer'
]
for
layer
in
layers_
:
desc_ops_add
=
block_desc
.
ops
.
add
()
# print layer
# for i in layer:
# print i
if
'name'
in
layer
:
l_name
=
layer
[
'name'
]
if
'type'
in
layer
:
self
.
package_ops_type
(
desc_ops_add
,
layer
)
if
'weight'
in
layer
:
self
.
package_ops_weight2inputs
(
desc_ops_add
,
layer
)
if
'output'
in
layer
:
self
.
package_ops_outputs
(
desc_ops_add
,
layer
)
if
'input'
in
layer
:
self
.
package_ops_inputs
(
desc_ops_add
,
layer
)
self
.
package_ops_attrs
(
desc_ops_add
,
layer
)
self
.
add_op_fetch
(
block_desc
)
def
add_op_feed
(
self
,
block_desc
):
desc_ops_add
=
block_desc
.
ops
.
add
()
inputs_add
=
desc_ops_add
.
inputs
.
add
()
inputs_add
.
parameter
=
'X'
inputs_add
.
arguments
.
append
(
'feed'
)
desc_ops_add
.
type
=
'feed'
outputs_add
=
desc_ops_add
.
outputs
.
add
()
outputs_add
.
parameter
=
'Out'
outputs_add
.
arguments
.
append
(
'data'
)
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'col'
# boolean
attrs_add
.
type
=
0
attrs_add
.
i
=
0
def
add_op_fetch
(
self
,
block_desc
):
desc_ops_add
=
block_desc
.
ops
.
add
()
inputs_add
=
desc_ops_add
.
inputs
.
add
()
inputs_add
.
parameter
=
'X'
inputs_add
.
arguments
.
append
(
'conv_pred_87'
)
desc_ops_add
.
type
=
'fetch'
outputs_add
=
desc_ops_add
.
outputs
.
add
()
outputs_add
.
parameter
=
'Out'
outputs_add
.
arguments
.
append
(
'fetch'
)
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'col'
# boolean
attrs_add
.
type
=
0
attrs_add
.
i
=
0
@
staticmethod
def
package_ops_attrs
(
desc_ops_add
,
layer
):
# print l_params
# print desc_ops_add.type
if
desc_ops_add
.
type
==
types
.
op_fluid_fusion_conv_add
:
Converter
.
pack_fusion_conv_add_attr
(
desc_ops_add
,
layer
)
elif
desc_ops_add
.
type
==
types
.
op_fluid_relu
:
# fusion_conv_add : attrs
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'use_mkldnn'
# boolean
attrs_add
.
type
=
6
attrs_add
.
b
=
0
@
staticmethod
def
pack_fusion_conv_add_attr
(
desc_ops_add
,
layer
):
# fusion_conv_add : attrs
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'workspace_size_MB'
# 0-->INT
attrs_add
.
type
=
0
attrs_add
.
i
=
4096
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'data_format'
# 2-->STRING
attrs_add
.
type
=
2
attrs_add
.
s
=
'AnyLayout'
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'use_mkldnn'
# boolean
attrs_add
.
type
=
6
attrs_add
.
b
=
0
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'use_cudnn'
# boolean
attrs_add
.
type
=
6
attrs_add
.
b
=
1
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'dilations'
# ints
attrs_add
.
type
=
3
attrs_add
.
ints
.
append
(
1
)
attrs_add
.
ints
.
append
(
1
)
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'axis'
# int
attrs_add
.
type
=
0
attrs_add
.
i
=
1
if
'param'
in
layer
:
l_params
=
layer
[
'param'
]
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'paddings'
# ints
attrs_add
.
type
=
3
attrs_add
.
ints
.
append
(
l_params
[
types
.
fusion_conv_add_attrs_dict
.
get
(
'paddings'
)])
attrs_add
.
ints
.
append
(
l_params
[
types
.
fusion_conv_add_attrs_dict
.
get
(
'paddings'
)])
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'strides'
# ints
attrs_add
.
type
=
3
attrs_add
.
ints
.
append
(
l_params
[
types
.
fusion_conv_add_attrs_dict
.
get
(
'strides'
)])
attrs_add
.
ints
.
append
(
l_params
[
types
.
fusion_conv_add_attrs_dict
.
get
(
'strides'
)])
attrs_add
=
desc_ops_add
.
attrs
.
add
()
attrs_add
.
name
=
'groups'
# int
attrs_add
.
type
=
0
attrs_add
.
i
=
l_params
[
types
.
fusion_conv_add_attrs_dict
.
get
(
'groups'
)]
# attrs_add.i = 1
#
# op_attrs_tupl = types.op_io_dict.get(desc_ops_add.type) \
# .get(types.mdl_attrs_key)
#
#
#
#
# # group stride padding
# print '----------------------'
# for i, val in enumerate(op_attrs_tupl):
# attrs_add = desc_ops_add.attrs.add()
# attr_name = op_attrs_tupl[i]
# print attr_name
# attrs_add.name = attr_name
# attrs_add.type = types.fluid_attrs_type_dict.get(attr_name)
# attrs_add.
# print l_params[types.fusion_conv_add_attrs_dict.get(attr_name)]
# for p in l_params:
# attrs_add = desc_ops_add.attrs.add()
@
staticmethod
def
package_ops_inputs
(
desc_ops_add
,
layer
):
l_inputs
=
layer
[
'input'
]
for
i
in
l_inputs
:
inputs_add
=
desc_ops_add
.
inputs
.
add
()
# print i
inputs_add
.
parameter
=
types
.
op_io_dict
.
get
(
desc_ops_add
.
type
).
get
(
types
.
mdl_inputs_key
)
inputs_add
.
arguments
.
append
(
i
)
@
staticmethod
def
package_ops_outputs
(
desc_ops_add
,
layer
):
l_outputs
=
layer
[
'output'
]
for
o
in
l_outputs
:
# print o
outputs_add
=
desc_ops_add
.
outputs
.
add
()
outputs_add
.
parameter
=
types
.
op_io_dict
.
get
(
desc_ops_add
.
type
).
get
(
types
.
mdl_outputs_key
)
outputs_add
.
arguments
.
append
(
o
)
def
package_ops_weight2inputs
(
self
,
desc_ops_add
,
layer
):
l_weights
=
layer
[
'weight'
]
for
w
in
l_weights
:
self
.
weight_list_
.
append
(
w
)
if
layer
[
'type'
]
==
'DepthwiseConvolutionLayer'
:
# print l_weights[0]
self
.
deepwise_weight_list_
.
append
(
l_weights
[
0
])
op_weight_tup
=
types
.
op_io_dict
.
get
(
desc_ops_add
.
type
).
get
(
types
.
mdl_weight_key
)
# print len(op_weight_tup)
for
i
,
val
in
enumerate
(
op_weight_tup
):
# print i
# print val
inputs_add
=
desc_ops_add
.
inputs
.
add
()
inputs_add
.
parameter
=
op_weight_tup
[
i
]
inputs_add
.
arguments
.
append
(
l_weights
[
i
])
# for w in l_weights:
# inputs_add = desc_ops_add.inputs.add()
# # print w
# inputs_add.parameter = op_weight_tup[0]
# inputs_add.arguments.append(w)
@
staticmethod
def
package_ops_type
(
desc_ops_add
,
layer
):
l_type
=
layer
[
'type'
]
# print l_type
# print mdl2fluid_op_layer_dict.get(l_type)
desc_ops_add
.
type
=
types
.
mdl2fluid_op_layer_dict
.
get
(
l_type
)
def
package_vars
(
self
,
block_desc
):
vars_add
=
block_desc
.
vars
.
add
()
vars_add
.
name
=
'feed'
vars_add
.
type
.
type
=
9
# 9 is FEED_MINIBATCH
vars_add
.
persistable
=
1
# fetch
vars_add
=
block_desc
.
vars
.
add
()
vars_add
.
name
=
'fetch'
vars_add
.
type
.
type
=
10
# 10 is fetch list
vars_add
.
persistable
=
1
json_matrix_
=
self
.
mdl_json
[
'matrix'
]
# print json_matrix_
for
j
in
json_matrix_
:
vars_add
=
block_desc
.
vars
.
add
()
vars_add
.
name
=
j
vars_add
.
type
.
type
=
7
# 7 is lodtensor
# print j
tensor
=
vars_add
.
type
.
lod_tensor
.
tensor
tensor
.
data_type
=
5
# 5 is FP32
# print json_matrix_
dims_of_matrix
=
json_matrix_
.
get
(
j
)
# dims_size = len(dims_of_matrix)
# print dims_size
# if dims_size == 4:
# tensor.dims.append(dims_of_matrix[0]) # N
# tensor.dims.append(dims_of_matrix[3]) # C
# tensor.dims.append(dims_of_matrix[1]) # H
# tensor.dims.append(dims_of_matrix[2]) # W
# else:
# issues in mdl model filter swich n and c
if
j
in
self
.
deepwise_weight_list_
and
len
(
dims_of_matrix
)
==
4
:
print
j
tensor
.
dims
.
append
(
dims_of_matrix
[
1
])
tensor
.
dims
.
append
(
dims_of_matrix
[
0
])
tensor
.
dims
.
append
(
dims_of_matrix
[
2
])
tensor
.
dims
.
append
(
dims_of_matrix
[
3
])
print
tensor
.
dims
else
:
for
dims
in
dims_of_matrix
:
# print dims
tensor
.
dims
.
append
(
dims
)
if
j
in
self
.
weight_list_
:
vars_add
.
persistable
=
1
dims_size
=
len
(
dims_of_matrix
)
# print dims_size
if
dims_size
==
4
:
# convert weight from nhwc to nchw
Swichter
().
nhwc2nchw_one_slice_add_head
(
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nhwc/'
+
j
+
'.bin'
,
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nchw_with_head/'
+
j
,
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nchw/'
+
j
+
'.tmp'
,
dims_of_matrix
[
0
],
dims_of_matrix
[
1
],
dims_of_matrix
[
2
],
dims_of_matrix
[
3
]
)
else
:
Swichter
().
copy_add_head
(
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nhwc/'
+
j
+
'.bin'
,
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nchw_with_head/'
+
j
,
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nchw/'
+
j
+
'.tmp'
)
else
:
vars_add
.
persistable
=
0
mdl_path
=
"/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/YOLO_Universal.json"
converter
=
Converter
(
mdl_path
)
converter
.
convert
()
python/tools/mdl2fluid/model_reader.py
0 → 100644
浏览文件 @
f8ba0f54
import
os
import
framework_pb2
as
framework_pb2
def
read_model
(
model_path
):
print
(
'read_model.'
)
path_8
=
unicode
(
model_path
,
'utf8'
)
try
:
with
open
(
path_8
,
"rb"
)
as
f_model
:
print
get_file_size
(
model_path
)
desc
=
framework_pb2
.
ProgramDesc
()
desc
.
ParseFromString
(
f_model
.
read
())
print
desc
# print desc.blocks
except
IOError
:
print
": File not found. Creating a new file."
def
get_file_size
(
file_path
):
file_path
=
unicode
(
file_path
,
'utf8'
)
fsize
=
os
.
path
.
getsize
(
file_path
)
fsize
=
fsize
/
float
(
1024
*
1024
)
return
round
(
fsize
,
2
)
path
=
"newyolo/__model__"
read_model
(
path
)
python/tools/mdl2fluid/op_types.py
0 → 100644
浏览文件 @
f8ba0f54
# coding=utf-8
# mdl layers
layer_mdl_conv
=
'ConvolutionLayer'
layer_mdl_deepwise_conv
=
'DepthwiseConvolutionLayer'
layer_mdl_relu
=
'ReluLayer'
layer_mdl_pointwise_add
=
'PointwiseConvolutionLayer'
# fluid ops
op_fluid_fusion_conv_add
=
'fusion_conv_add'
op_fluid_relu
=
'relu'
# dict mdk layer --- fluid op
mdl2fluid_op_layer_dict
=
{
layer_mdl_conv
:
op_fluid_fusion_conv_add
,
layer_mdl_deepwise_conv
:
op_fluid_fusion_conv_add
,
layer_mdl_relu
:
op_fluid_relu
,
layer_mdl_pointwise_add
:
op_fluid_fusion_conv_add
}
mdl_outputs_key
=
"outputs"
mdl_inputs_key
=
"inputs"
mdl_weight_key
=
"weights"
mdl_attrs_key
=
"params"
# dict of mdl-input _out param to fluid input out attrs
fusion_conv_add_dict
=
{
mdl_inputs_key
:
'Input'
,
mdl_outputs_key
:
'Out'
,
mdl_weight_key
:
(
'Filter'
,
'Y'
),
mdl_attrs_key
:
(
# 'workspace_size_MB', 'use_mkldnn', 'use_cudnn', 'data_format','dilations',
# dilations = [1,1]
'groups'
,
'paddings'
,
'strides'
# 'axis'
)
}
relu_dict
=
{
mdl_inputs_key
:
'X'
,
mdl_outputs_key
:
'Out'
,
mdl_weight_key
:
()
}
# mdl layers --- fluid ops
op_io_dict
=
{
'fusion_conv_add'
:
fusion_conv_add_dict
,
'relu'
:
relu_dict
}
# fluid attr key --- mdl params key
fusion_conv_add_attrs_dict
=
{
'paddings'
:
'pad'
,
'strides'
:
'stride'
,
'groups'
:
'group'
}
# fluid attr key --- mdl params key
fluid_attrs_type_dict
=
{
'paddings'
:
0
,
'strides'
:
6
,
'groups'
:
6
}
# '': "bias_term", 是不是要add 目前 yolo的模型都是 bias_term = 1
# attrs {
# name: "axis"
# type: INT
# i: 1
# }
# attrs_name = {
# 'name': "workspace_size_MB",
# 'type': 'INT',
# 'i': '4096'
# }
# attrs
# {
# name: "data_format"
# type: STRING
# s: "AnyLayout"
# }
# attrs
# {
# name: "use_mkldnn"
# type: BOOLEAN
# b: false
# }
# attrs
# {
# name: "use_cudnn"
# type: BOOLEAN
# b: true
# }
# attrs
# {
# name: "dilations"
# type: INTS
# ints: 1
# ints: 1
# }
# attrs
# {
# name: "groups"
# type: INT
# i: 1
# }
# attrs
# {
# name: "paddings"
# type: INTS
# ints: 0
# ints: 0
# }
# attrs
# {
# name: "strides"
# type: INTS
# ints: 1
# ints: 1
# }
python/tools/mdl2fluid/swicher.py
0 → 100644
浏览文件 @
f8ba0f54
from
array
import
array
class
Swichter
:
def
__init__
(
self
):
pass
def
nhwc2nchw_one_slice
(
self
,
from_file_name
,
to_file_name
,
batch
,
channel
,
height
,
width
):
from_file
=
open
(
from_file_name
,
"rb"
)
to_file
=
open
(
to_file_name
,
"wb"
)
float_array
=
array
(
"f"
)
float_array
.
fromfile
(
from_file
,
width
*
height
*
batch
*
channel
)
float_write_array
=
array
(
"f"
)
for
b
in
range
(
batch
):
for
c
in
range
(
channel
):
for
h
in
range
(
height
):
for
w
in
range
(
width
):
float_value
=
float_array
[
b
*
channel
*
width
*
height
+
channel
*
(
h
*
width
+
w
)
+
c
]
float_write_array
.
append
(
float_value
)
float_write_array
.
tofile
(
to_file
)
from_file
.
close
()
to_file
.
close
()
def
copy
(
self
,
from_file_name
,
to_file_name
):
from_file
=
open
(
from_file_name
,
"rb"
)
to_file
=
open
(
to_file_name
,
"wb"
)
to_file
.
write
(
from_file
.
read
())
from_file
.
close
()
to_file
.
close
()
def
nhwc2nchw_one_slice_add_head
(
self
,
from_file_name
,
to_file_name
,
tmp_file_name
,
batch
,
channel
,
height
,
width
):
from_file
=
open
(
from_file_name
,
"rb"
)
tmp_file
=
open
(
tmp_file_name
,
"wb+"
)
float_array
=
array
(
"f"
)
float_array
.
fromfile
(
from_file
,
width
*
height
*
batch
*
channel
)
float_write_array
=
array
(
"f"
)
for
b
in
range
(
batch
):
for
c
in
range
(
channel
):
for
h
in
range
(
height
):
for
w
in
range
(
width
):
float_value
=
float_array
[
b
*
channel
*
width
*
height
+
channel
*
(
h
*
width
+
w
)
+
c
]
float_write_array
.
append
(
float_value
)
float_write_array
.
tofile
(
tmp_file
)
tmp_file
.
close
()
from_file
.
close
()
tmp_file
=
open
(
tmp_file_name
,
"rb"
)
to_file
=
open
(
to_file_name
,
"wb"
)
tmp
=
tmp_file
.
read
()
head
=
self
.
read_head
(
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/yolo/conv1_biases'
)
to_file
.
write
(
head
)
to_file
.
write
(
tmp
)
tmp_file
.
close
()
to_file
.
close
()
def
read_head
(
self
,
head_file
):
from_file
=
open
(
head_file
,
"rb"
)
read
=
from_file
.
read
(
20
)
# print read
from_file
.
close
()
# print read
return
read
def
copy_add_head
(
self
,
from_file_name
,
to_file_name
,
tmp_file_name
):
from_file
=
open
(
from_file_name
,
"rb"
)
to_file
=
open
(
to_file_name
,
"wb"
)
# tmp_file = open(tmp_file_name, "wb")
head
=
self
.
read_head
(
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/yolo/conv1_biases'
)
to_file
.
write
(
head
)
to_file
.
write
(
from_file
.
read
())
from_file
.
close
()
to_file
.
close
()
pass
# Swichter().nhwc2nchw_one_slice(
# '/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nhwc/conv5_6_dw_0.bin',
# '/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/float32s_nchw/conv5_6_dw_0', 1,
# 512, 3, 3)
Swichter
().
read_head
(
'/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/yolo/conv1_biases'
)
src/fpga/api.cpp
浏览文件 @
f8ba0f54
...
...
@@ -17,17 +17,21 @@ limitations under the License. */
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <algorithm>
#include <map>
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
#define FPGA_TEST_MODE
//
#define PADDLE_MOBILE_OS_LINUX
#define PADDLE_MOBILE_OS_LINUX
namespace
paddle_mobile
{
namespace
fpga
{
static
int
fd
=
-
1
;
static
const
char
*
device_path
=
"/dev/fpgadrv0"
;
#ifdef PADDLE_MOBILE_OS_LINUX
static
std
::
map
<
void
*
,
size_t
>
memory_map
;
#endif
static
inline
int
do_ioctl
(
int
req
,
const
void
*
arg
)
{
#ifdef PADDLE_MOBILE_OS_LINUX
...
...
@@ -48,10 +52,13 @@ int open_device() {
// memory management;
void
*
fpga_malloc
(
size_t
size
)
{
DLOG
<<
size
<<
" bytes allocated"
;
static
uint64_t
counter
=
0
;
counter
+=
size
;
DLOG
<<
size
<<
" bytes allocated. Total "
<<
counter
<<
" bytes"
;
#ifdef PADDLE_MOBILE_OS_LINUX
return
reinterpret_cast
<
void
*>
(
mmap64
(
NULL
,
size
,
PROT_READ
|
PROT_WRITE
,
MAP_SHARED
,
fd
,
0
));
auto
ptr
=
mmap64
(
nullptr
,
size
,
PROT_READ
|
PROT_WRITE
,
MAP_SHARED
,
fd
,
0
);
memory_map
.
insert
(
std
::
make_pair
(
ptr
,
size
));
return
ptr
;
#else
return
malloc
(
size
);
#endif
...
...
@@ -59,7 +66,16 @@ void *fpga_malloc(size_t size) {
void
fpga_free
(
void
*
ptr
)
{
#ifdef PADDLE_MOBILE_OS_LINUX
munmap
(
ptr
,
0
);
static
uint64_t
counter
=
0
;
size_t
size
=
0
;
auto
iter
=
memory_map
.
find
(
ptr
);
// std::map<void *, size_t>::iterator
if
(
iter
!=
memory_map
.
end
())
{
size
=
iter
->
second
;
munmap
(
ptr
,
size
);
memory_map
.
erase
(
iter
);
}
counter
+=
size
;
DLOG
<<
size
<<
" bytes freed. Total "
<<
counter
<<
" bytes"
;
#else
free
(
ptr
);
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录