Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
f851d211
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f851d211
编写于
8月 09, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gemm merge function C = A * B + bias
上级
150ccc98
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
24 addition
and
116 deletion
+24
-116
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+3
-3
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+3
-3
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+2
-1
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
+2
-1
src/operators/kernel/central-arm-func/mul_arm_func.h
src/operators/kernel/central-arm-func/mul_arm_func.h
+2
-1
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+2
-63
src/operators/math/gemm.h
src/operators/math/gemm.h
+2
-4
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+3
-29
src/operators/math/math_function.h
src/operators/math/math_function.h
+2
-8
test/common/test_gemm_perf.cpp
test/common/test_gemm_perf.cpp
+3
-3
未找到文件。
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
f851d211
...
@@ -106,9 +106,9 @@ void ConvAddBasic(const FusionConvAddParam ¶m) {
...
@@ -106,9 +106,9 @@ void ConvAddBasic(const FusionConvAddParam ¶m) {
// gemm
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
WithBias
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
false
,
biase_data
);
static_cast
<
float
>
(
1
),
false
,
biase_data
);
}
}
}
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
浏览文件 @
f851d211
...
@@ -109,9 +109,9 @@ void ConvAddReluCompute(const FusionConvAddReluParam ¶m) {
...
@@ -109,9 +109,9 @@ void ConvAddReluCompute(const FusionConvAddReluParam ¶m) {
// gemm
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
WithBias
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
true
,
biase_data
);
static_cast
<
float
>
(
1
),
true
,
biase_data
);
}
}
}
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
f851d211
...
@@ -30,6 +30,7 @@ inline void ConvBasic(const ConvParam ¶m) {
...
@@ -30,6 +30,7 @@ inline void ConvBasic(const ConvParam ¶m) {
Tensor
filter
=
*
param
.
Filter
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
output
->
mutable_data
<
float
>
();
float
*
bias_data
=
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
...
@@ -106,7 +107,7 @@ inline void ConvBasic(const ConvParam ¶m) {
...
@@ -106,7 +107,7 @@ inline void ConvBasic(const ConvParam ¶m) {
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
static_cast
<
float
>
(
0
)
,
false
,
bias_data
);
}
}
}
}
}
}
...
...
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
浏览文件 @
f851d211
...
@@ -28,6 +28,7 @@ void FusionFcCompute(const FusionFcParam ¶m) {
...
@@ -28,6 +28,7 @@ void FusionFcCompute(const FusionFcParam ¶m) {
int
axis
=
param
.
Axis
();
int
axis
=
param
.
Axis
();
Tensor
*
out
=
param
.
Out
();
Tensor
*
out
=
param
.
Out
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
float
*
bias_data
=
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
...
@@ -56,7 +57,7 @@ void FusionFcCompute(const FusionFcParam ¶m) {
...
@@ -56,7 +57,7 @@ void FusionFcCompute(const FusionFcParam ¶m) {
// DLOG << out_data[i];
// DLOG << out_data[i];
// }
// }
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
));
out
,
static_cast
<
float
>
(
1
)
,
false
,
bias_data
);
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
// if (out_dim.size() != 2) {
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// out->Resize(out_dim);
...
...
src/operators/kernel/central-arm-func/mul_arm_func.h
浏览文件 @
f851d211
...
@@ -59,6 +59,7 @@ void MulCompute(const MulParam ¶m) {
...
@@ -59,6 +59,7 @@ void MulCompute(const MulParam ¶m) {
const
Tensor
*
input_y
=
param
.
InputY
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
out
=
param
.
Out
();
Tensor
*
out
=
param
.
Out
();
out
->
mutable_data
<
float
>
();
out
->
mutable_data
<
float
>
();
float
*
bias_data
=
out
->
mutable_data
<
float
>
();
const
Tensor
x_matrix
=
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
...
@@ -72,7 +73,7 @@ void MulCompute(const MulParam ¶m) {
...
@@ -72,7 +73,7 @@ void MulCompute(const MulParam ¶m) {
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
out
->
Resize
({
x_matrix
.
dims
()[
0
],
y_matrix
.
dims
()[
1
]});
}
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
out
,
static_cast
<
float
>
(
0
)
,
false
,
bias_data
);
if
(
out_dim
.
size
()
!=
2
)
{
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
(
out_dim
);
out
->
Resize
(
out_dim
);
}
}
...
...
src/operators/math/gemm.cpp
浏览文件 @
f851d211
...
@@ -2248,69 +2248,8 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
...
@@ -2248,69 +2248,8 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
// 32位 float 矩阵乘法
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
float
*
bias
)
{
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
32
*
1024
;
int
L2
=
0.5
*
1024
*
1024
;
KC
=
k
;
MC
=
L1
/
(
KC
*
sizeof
(
float
));
NC
=
L2
/
(
KC
*
sizeof
(
float
));
// make sure MC is multiple of MR, and NC is multiple of NR
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
for
(
int
l
=
0
;
l
<
KC
;
++
l
)
{
zero
[
l
]
=
0
;
}
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
#if __aarch64__
// PackMatrixB_12c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
PackMatrixB_16c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
#else
PackMatrixB_8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
#endif
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
#if __aarch64__
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
// PackMatrixA_8r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
#else
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
#endif
InnerKernel
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBias
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
32
*
1024
;
int
L1
=
32
*
1024
;
...
...
src/operators/math/gemm.h
浏览文件 @
f851d211
...
@@ -128,10 +128,8 @@ void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
...
@@ -128,10 +128,8 @@ void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
// 32位 float 矩阵乘法
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
void
SgemmWithBias
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
float
*
bias
);
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
bias
);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
...
...
src/operators/math/math_function.cpp
浏览文件 @
f851d211
...
@@ -22,7 +22,8 @@ namespace math {
...
@@ -22,7 +22,8 @@ namespace math {
template
<
>
template
<
>
void
matmul
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
void
matmul
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
)
{
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
float
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
@@ -42,34 +43,7 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
...
@@ -42,34 +43,7 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
);
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
}
template
<
>
void
matmulWithBias
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
float
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
SgemmWithBias
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
}
}
template
<
>
template
<
>
...
...
src/operators/math/math_function.h
浏览文件 @
f851d211
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
nki
#include <cmath>
#include <cmath>
#include "framework/tensor.h"
#include "framework/tensor.h"
...
@@ -21,16 +21,10 @@ namespace paddle_mobile {
...
@@ -21,16 +21,10 @@ namespace paddle_mobile {
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{
// matrix multiply with continuous memory
template
<
typename
T
>
template
<
typename
T
>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
);
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
,
float
*
bias
);
template
<
typename
T
>
void
matmulWithBias
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
,
float
*
bias
);
template
<
typename
T
>
template
<
typename
T
>
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
test/common/test_gemm_perf.cpp
浏览文件 @
f851d211
...
@@ -49,9 +49,9 @@ int main() {
...
@@ -49,9 +49,9 @@ int main() {
auto
time1
=
time
();
auto
time1
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
float
>
(
aa
,
false
,
bb
,
false
,
paddle_mobile
::
operators
::
math
::
matmul
<
float
>
(
static_cast
<
float
>
(
1
),
&
cc
,
aa
,
false
,
bb
,
false
,
static_cast
<
float
>
(
1
),
&
cc
,
static_cast
<
float
>
(
0
)
,
static_cast
<
float
>
(
0
),
false
);
false
,
ccptr
);
// paddle_mobile::operators::math::matmulWithBn<float>(
// paddle_mobile::operators::math::matmulWithBn<float>(
// aa, false, bb, false, static_cast<float>(1), &cc,
// aa, false, bb, false, static_cast<float>(1), &cc,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录