Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
f7eb7352
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f7eb7352
编写于
12月 10, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Change 'val * (1.f / count)' to 'val / count' to fix average pooling calculation precision
上级
32917513
变更
13
展开全部
隐藏空白更改
内联
并排
Showing
13 changed file
with
802 addition
and
786 deletion
+802
-786
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+4
-3
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+8
-8
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+4
-3
src/operators/kernel/central-arm-func/conv_transpose_arm_func.h
...erators/kernel/central-arm-func/conv_transpose_arm_func.h
+2
-2
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
+7
-11
src/operators/kernel/central-arm-func/mul_arm_func.h
src/operators/kernel/central-arm-func/mul_arm_func.h
+6
-6
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+4
-4
src/operators/math/math_function.h
src/operators/math/math_function.h
+11
-11
src/operators/math/math_function_int8.cpp
src/operators/math/math_function_int8.cpp
+15
-4
src/operators/math/pooling.h
src/operators/math/pooling.h
+1
-1
src/operators/math/pooling3x3.cpp
src/operators/math/pooling3x3.cpp
+681
-675
test/common/test_gemm_perf.cpp
test/common/test_gemm_perf.cpp
+10
-10
test/operators/test_pool_op.cpp
test/operators/test_pool_op.cpp
+49
-48
未找到文件。
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
f7eb7352
...
...
@@ -25,6 +25,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
void
ConvAddBasic
(
const
FusionConvAddParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
...
...
@@ -106,9 +107,9 @@ void ConvAddBasic(const FusionConvAddParam<CPU> ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
false
,
biase_data
);
math
::
matmul
<
float
,
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
false
,
biase_data
);
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
浏览文件 @
f7eb7352
...
...
@@ -25,15 +25,15 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
,
typename
S
>
template
<
typename
Itype
,
typename
Otype
>
void
ConvAddReluCompute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
int32_t
axis
=
param
.
Axis
();
S
*
bias_data
=
bias
.
data
<
S
>
();
Otype
*
bias_data
=
bias
.
data
<
Otype
>
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
P
>
();
output
->
mutable_data
<
Otype
>
();
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
...
...
@@ -64,7 +64,7 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
P
>
(
col_shape
);
col
.
mutable_data
<
Itype
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
...
...
@@ -83,8 +83,8 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
int32_t
in_step
=
static_cast
<
int32_t
>
(
input
->
dims
()[
1
])
/
groups
;
int32_t
out_step
=
static_cast
<
int32_t
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
P
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
P
>
im2col
;
math
::
Vol2ColFunctor
<
CPU
,
Itype
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
Itype
>
im2col
;
for
(
int32_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
...
...
@@ -112,8 +112,8 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
alpha
,
&
out_slice
,
beta
,
true
,
bias_data
);
math
::
matmul
<
Itype
,
Otype
>
(
filter_slice
,
false
,
col_matrix
,
false
,
alpha
,
&
out_slice
,
beta
,
true
,
bias_data
);
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
f7eb7352
...
...
@@ -106,9 +106,10 @@ inline void GemmConv(const ConvParam<CPU> ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
),
false
,
static_cast
<
Otype
*>
(
nullptr
));
math
::
matmul
<
Itype
,
Otype
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
),
false
,
static_cast
<
Otype
*>
(
nullptr
));
}
}
}
...
...
src/operators/kernel/central-arm-func/conv_transpose_arm_func.h
浏览文件 @
f7eb7352
...
...
@@ -93,8 +93,8 @@ void ConvTransposeCompute(const ConvTransposeParam<CPU> ¶m) {
Tensor
filter_slice
=
filter
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
out_slice
=
output_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
(
filter_slice
,
true
,
in_slice
,
false
,
static_cast
<
P
>
(
1.0
)
,
&
col_matrix
,
static_cast
<
P
>
(
0.0
));
math
::
matmul
<
P
,
P
>
(
filter_slice
,
true
,
in_slice
,
false
,
static_cast
<
P
>
(
1.0
),
&
col_matrix
,
static_cast
<
P
>
(
0.0
));
if
(
data_dim
==
2U
)
{
col2im
(
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
...
...
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
浏览文件 @
f7eb7352
...
...
@@ -23,20 +23,16 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
,
typename
S
>
template
<
typename
Itype
,
typename
Otype
>
void
FusionFcCompute
(
const
FusionFcParam
<
CPU
>
&
param
)
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
input_z
=
param
.
InputZ
();
S
*
input_z_data
=
input_z
->
data
<
S
>
();
Otype
*
input_z_data
=
input_z
->
data
<
Otype
>
();
int
axis
=
param
.
Axis
();
Tensor
*
out
=
param
.
Out
();
// int m = out->dims()[0];
// int n = out->dims()[1];
auto
*
out_data
=
out
->
mutable_data
<
P
>
();
auto
*
out_data
=
out
->
mutable_data
<
Itype
>
();
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
...
...
@@ -59,11 +55,11 @@ void FusionFcCompute(const FusionFcParam<CPU> ¶m) {
// bias_data的维度和out的第二个维度一致
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
Otype
)
*
classes
);
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
alpha
,
out
,
beta
,
false
);
math
::
matmul
<
Itype
,
Otype
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
1
)
,
false
);
}
}
// namespace operators
...
...
src/operators/kernel/central-arm-func/mul_arm_func.h
浏览文件 @
f7eb7352
...
...
@@ -73,14 +73,14 @@ void MulCompute(const MulParam<CPU> ¶m) {
}
if
(
param
.
InputX
()
->
type
()
==
typeid
(
int8_t
))
{
out
->
mutable_data
<
int32_t
>
();
math
::
matmul
<
float
,
int32_t
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
math
::
matmul
<
int8_t
,
int32_t
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
}
else
{
out
->
mutable_data
<
float
>
();
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
math
::
matmul
<
float
,
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
),
out
,
static_cast
<
float
>
(
0
));
}
if
(
out_dim
.
size
()
!=
2
)
{
out
->
Resize
(
out_dim
);
...
...
src/operators/math/math_function.cpp
浏览文件 @
f7eb7352
...
...
@@ -41,10 +41,10 @@ void set_constant(framework::Tensor *tensor, float value) {
}
template
<
>
void
matmul
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
float
*
bias
)
{
void
matmul
<
float
,
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
float
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
...
src/operators/math/math_function.h
浏览文件 @
f7eb7352
...
...
@@ -24,24 +24,24 @@ namespace math {
void
set_constant
(
framework
::
Tensor
*
tensor
,
float
value
);
template
<
typename
T
>
template
<
typename
Itype
,
typename
Otype
>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
,
float
*
bias
=
nullptr
);
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
=
false
,
Otype
*
bias
=
nullptr
);
template
<
typename
T
,
typename
S
>
template
<
typename
Itype
,
typename
Otype
>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
,
S
*
bias
=
nullptr
,
bool
addOnRow
=
false
);
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
Otype
*
bias
,
bool
addOnRow
);
template
<
typename
T
>
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
framework
::
Tensor
*
new_scale
,
framework
::
Tensor
*
new_bias
,
int
group
,
float
*
bias
=
nullptr
);
int
group
,
T
*
bias
=
nullptr
);
void
matmulWithPRelu
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
...
...
src/operators/math/math_function_int8.cpp
浏览文件 @
f7eb7352
...
...
@@ -22,10 +22,11 @@ namespace operators {
namespace
math
{
template
<
>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
int32_t
*
bias
,
bool
addOnRow
)
{
void
matmul
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
int32_t
*
bias
,
bool
addOnRow
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
...
@@ -93,6 +94,16 @@ void matmul(const framework::Tensor &matrix_a, bool trans_a,
#endif
}
}
template
<
>
void
matmul
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
int32_t
*
bias
)
{
matmul
<
int8_t
,
int32_t
>
(
matrix_a
,
trans_a
,
matrix_b
,
trans_b
,
alpha
,
matrix_out
,
beta
,
relu
,
bias
,
false
);
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/pooling.h
浏览文件 @
f7eb7352
...
...
@@ -53,7 +53,7 @@ struct PoolingVal<Avg> {
++
count
;
return
*
this
;
}
inline
float
Value
()
{
return
(
count
>
0
)
?
val
*
(
1.
f
/
count
)
:
0.
f
;
}
inline
float
Value
()
{
return
(
count
>
0
)
?
val
/
count
:
0.
f
;
}
};
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
...
...
src/operators/math/pooling3x3.cpp
浏览文件 @
f7eb7352
此差异已折叠。
点击以展开。
test/common/test_gemm_perf.cpp
浏览文件 @
f7eb7352
...
...
@@ -73,14 +73,14 @@ int main() {
// float
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
float
>
(
paddle_mobile
::
operators
::
math
::
matmul
<
float
,
float
>
(
aa
,
false
,
bb
,
false
,
static_cast
<
float
>
(
1
),
&
cc
,
static_cast
<
float
>
(
0
),
false
,
nullptr
);
}
auto
time_start0
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
float
>
(
paddle_mobile
::
operators
::
math
::
matmul
<
float
,
float
>
(
aa
,
false
,
bb
,
false
,
static_cast
<
float
>
(
1
),
&
cc
,
static_cast
<
float
>
(
0
),
false
,
nullptr
);
}
...
...
@@ -91,14 +91,14 @@ int main() {
// int8_t without bias
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
floa
t
,
int32_t
>
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_
t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int32
,
static_cast
<
float
>
(
0
));
}
auto
time_start1
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
floa
t
,
int32_t
>
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_
t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int32
,
static_cast
<
float
>
(
0
));
}
...
...
@@ -109,13 +109,13 @@ int main() {
// int8_t with bias, column element wise add
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
0.618
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
false
,
bias_data_col
,
false
);
}
auto
time_start2
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
0.618
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
false
,
bias_data_col
,
false
);
}
...
...
@@ -126,13 +126,13 @@ int main() {
// int8_t with bias, row element wise add
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
0.618
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
false
,
bias_data_row
,
true
);
}
auto
time_start3
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
0.618
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
false
,
bias_data_row
,
true
);
}
...
...
@@ -143,13 +143,13 @@ int main() {
// int8_t with bias&relu
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
0.618
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
true
,
bias_data_col
,
false
);
}
auto
time_start4
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
(
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
,
int32_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
0.618
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
true
,
bias_data_col
,
false
);
}
...
...
test/operators/test_pool_op.cpp
浏览文件 @
f7eb7352
...
...
@@ -59,7 +59,8 @@ int TestPoolOp(int in_channels, int in_height, int in_width) {
attrs
[
"ksize"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
kernel_h
,
kernel_w
}));
attrs
[
"strides"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
stride_h
,
stride_w
}));
attrs
[
"paddings"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
pad_h
,
pad_w
}));
attrs
[
"ceil_mode"
].
Set
<
bool
>
(
false
);
attrs
[
"ceil_mode"
].
Set
<
bool
>
(
true
);
// attrs["ceil_mode"].Set<bool>(false);
attrs
[
"global_pooling"
].
Set
<
bool
>
(
false
);
auto
*
op
=
new
operators
::
PoolOp
<
CPU
,
float
>
(
"pool2d"
,
inputs
,
outputs
,
attrs
,
...
...
@@ -116,57 +117,57 @@ int main(int argc, char *argv[]) {
int
in_channels
=
atoi
(
argv
[
1
]);
int
in_height
=
atoi
(
argv
[
2
]);
int
in_width
=
atoi
(
argv
[
3
]);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=0, stride=1"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=2, stride=1"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=5, stride=1"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
5
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=0, stride=1"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=2, stride=1"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=5, stride=1"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
5
,
1
>
(
in_channels
,
in_height
,
in_width
);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=0, stride=1";
//
paddle_mobile::TestPoolOp<0, 3, 0, 1>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=1, stride=1";
//
paddle_mobile::TestPoolOp<0, 3, 1, 1>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=2, stride=1";
//
paddle_mobile::TestPoolOp<0, 3, 2, 1>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=5, stride=1";
//
paddle_mobile::TestPoolOp<0, 3, 5, 1>(in_channels, in_height, in_width);
//
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=0, stride=1";
//
paddle_mobile::TestPoolOp<1, 3, 0, 1>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=1, stride=1";
//
paddle_mobile::TestPoolOp<1, 3, 1, 1>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=2, stride=1";
//
paddle_mobile::TestPoolOp<1, 3, 2, 1>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=5, stride=1";
//
paddle_mobile::TestPoolOp<1, 3, 5, 1>(in_channels, in_height, in_width);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=0, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
0
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=1, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
1
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=2, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
2
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=max, kernel=3, pad=5, stride=2"
;
paddle_mobile
::
TestPoolOp
<
0
,
3
,
5
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=0, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
0
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=1, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
1
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=2, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
2
,
2
>
(
in_channels
,
in_height
,
in_width
);
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"float, pooling_type=avg, kernel=3, pad=5, stride=2"
;
paddle_mobile
::
TestPoolOp
<
1
,
3
,
5
,
2
>
(
in_channels
,
in_height
,
in_width
);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=1, stride=2";
//
paddle_mobile::TestPoolOp<0, 3, 1, 2>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=2, stride=2";
//
paddle_mobile::TestPoolOp<0, 3, 2, 2>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=max, kernel=3, pad=5, stride=2";
//
paddle_mobile::TestPoolOp<0, 3, 5, 2>(in_channels, in_height, in_width);
//
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=0, stride=2";
//
paddle_mobile::TestPoolOp<1, 3, 0, 2>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=1, stride=2";
//
paddle_mobile::TestPoolOp<1, 3, 1, 2>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=2, stride=2";
//
paddle_mobile::TestPoolOp<1, 3, 2, 2>(in_channels, in_height, in_width);
//
LOG(paddle_mobile::kLOG_INFO)
//
<< "float, pooling_type=avg, kernel=3, pad=5, stride=2";
//
paddle_mobile::TestPoolOp<1, 3, 5, 2>(in_channels, in_height, in_width);
// // kernel = 5, pad = 0, stride = 1
// LOG(paddle_mobile::kLOG_INFO)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录