提交 f2969df5 编写于 作者: L liuruilong

update ios io

上级 17b66f79
......@@ -84,3 +84,6 @@ SwiftProtobuf.framework
paddle-mobile.xcworkspace
metal/models/
metal/images/
tools/libomp.a
\ No newline at end of file
......@@ -44,7 +44,7 @@ if (LOG_PROFILE)
add_definitions(-DPADDLE_MOBILE_PROFILE)
endif()
if(USE_OPENMP AND NOT IS_IOS)
if(USE_OPENMP)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
add_definitions(-DPADDLE_MOBILE_USE_OPENMP)
endif()
......
......@@ -17,7 +17,17 @@
#import <CoreImage/CoreImage.h>
#import <Foundation/Foundation.h>
@interface PaddleMobile : NSObject
@interface PaddleMobileCPUResult: NSObject
@property (assign, nonatomic, readonly) float *output;
@property (assign, nonatomic, readonly) int outputSize;
-(void)releaseOutput;
@end
@interface PaddleMobileCPU : NSObject
/*
创建对象
......@@ -34,13 +44,36 @@
*/
- (BOOL)load:(NSString *)modelAndWeightPath;
/*
* 从内存中加载模型
* */
- (BOOL)LoadCombinedMemory:(size_t)modelLen
andModelBuf:(const uint8_t *)modelBuf
andModelParamsLen:(size_t)combinedParamsLen
andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf;
/*
* 对图像进行预处理, 需要外部开辟 output 内存, 外部释放 output 内存
* */
-(void)preprocess:(CGImageRef)image
output:(float *)output
means:(NSArray<NSNumber *> *)means
scale:(float)scale
dim:(NSArray<NSNumber *> *)dim;
/*
* 预测预处理后的数据, 返回结果使用结束需要调用其 realseOutput 函数进行释放
* */
- (PaddleMobileCPUResult *)predictInput:(float *)input
dim:(NSArray<NSNumber *> *)dim;
/*
进行预测, means 和 scale 为训练模型时的预处理参数, 如训练时没有做这些预处理则直接使用 predict
*/
- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale;
/*
进行预测
进行预测, 默认 means 为 0, scale 为 1.0
*/
- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim;
......
......@@ -15,21 +15,48 @@
#import "PaddleMobile.h"
#import "op_symbols.h"
#include "framework/tensor.h"
#import "io/paddle_mobile.h"
#import <memory>
#import <vector>
@interface PaddleMobile()
@interface PaddleMobileCPUResult()
-(void)toSetOutput:(float *)output;
-(void)toSetOutputSize:(int)outputSize;
@end
@implementation PaddleMobileCPUResult
-(void)releaseOutput {
delete [] _output;
_output = nil;
_outputSize = 0;
}
-(void)toSetOutput:(float *)output {
_output = output;
}
-(void)toSetOutputSize:(int)outputSize {
_outputSize = outputSize;
}
@end
@interface PaddleMobileCPU()
{
paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32> *pam_;
BOOL loaded_;
std::vector<float> *predict_input_;
}
@end
@implementation PaddleMobile
@implementation PaddleMobileCPU
static std::mutex shared_mutex;
......@@ -66,6 +93,14 @@ static std::mutex shared_mutex;
}
}
- (BOOL)LoadCombinedMemory:(size_t)modelLen
andModelBuf:(const uint8_t *)modelBuf
andModelParamsLen:(size_t)combinedParamsLen
andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf {
pam_->SetThreadNum(2);
return loaded_ = pam_->LoadCombinedMemory(modelLen, modelBuf, combinedParamsLen, combinedParamsBuf);
}
- (BOOL)load:(NSString *)modelAndWeightPath{
std::string model_path_str = std::string([modelAndWeightPath UTF8String]);
if (loaded_ = pam_->Load(model_path_str)) {
......@@ -75,6 +110,57 @@ static std::mutex shared_mutex;
}
}
-(void)preprocess:(CGImageRef)image
output:(float *)output
means:(NSArray<NSNumber *> *)means
scale:(float)scale
dim:(NSArray<NSNumber *> *)dim {
std::lock_guard<std::mutex> lock(shared_mutex);
// dim to c++ vector, get numel
std::vector<int64_t > dim_vec;
int numel = 1;
for (int k = 0; k < dim.count; ++k) {
int d = dim[k].intValue;
numel *= d;
dim_vec.push_back(d);
}
const int sourceRowBytes = CGImageGetBytesPerRow(image);
const int imageWidth = CGImageGetWidth(image);
const int imageHeight = CGImageGetHeight(image);
const int imageChannels = 4;
CGDataProviderRef provider = CGImageGetDataProvider(image);
CFDataRef cfData = CGDataProviderCopyData(provider);
const UInt8 *input = CFDataGetBytePtr(cfData);
int wanted_input_width = dim_vec[3];
int wanted_input_height = dim_vec[2];
int wanted_input_channels = dim_vec[1];
for (int c = 0; c < wanted_input_channels; ++c) {
float *out_channel = output + c * wanted_input_height * wanted_input_width;
for (int y = 0; y < wanted_input_height; ++y) {
float *out_row = out_channel + y * wanted_input_width;
for (int x = 0; x < wanted_input_width; ++x) {
int in_row = (y * imageHeight) / wanted_input_height;
int in_col = (x * imageWidth) / wanted_input_width;
const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
float *out_pos = out_row + x;
if (c == 0) {
*out_pos = (in_pixel[c] - means[c].floatValue) * scale;
}else if (c == 1){
*out_pos = (in_pixel[c] - means[c].floatValue) * scale;
}else if (c == 2){
*out_pos = (in_pixel[c] - means[c].floatValue) * scale;
}
}
}
}
}
-(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray<NSNumber *> *)means scale:(float)scale dim:(std::vector<int64_t>)dim{
if (means == nil) {
means = @[@0, @0, @0];
......@@ -105,27 +191,54 @@ static std::mutex shared_mutex;
}
}
- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
// printf(" hi i am here");
if (predict_input_) {
// printf(" fukc -- ");
// printf(" %d \n", predict_input_->size());
// dim to c++ vector, get numel
std::vector<int64_t > dim_vec = {1, 3, 300, 300};
// int numel = 1;
// for (int k = 0; k < dim.count; ++k) {
// int d = dim[k].intValue;
// numel *= d;
// dim_vec.push_back(d);
// }
std::vector<float> cpp_result = pam_->Predict(*predict_input_, dim_vec);
- (PaddleMobileCPUResult *)predictInput:(float *)input
dim:(NSArray<NSNumber *> *)dim {
std::lock_guard<std::mutex> lock(shared_mutex);
if (!loaded_) {
printf("PaddleMobile doesn't be loaded yet");
return nil;
}
if (dim.count != 4) {
printf("dim must have 4 elements");
return nil;
}
// printf(" predict one ");
// std::lock_guard<std::mutex> lock(shared_mutex);
// dim to c++ vector, get numel
std::vector<int64_t > dim_vec;
int numel = 1;
for (int k = 0; k < dim.count; ++k) {
int d = dim[k].intValue;
numel *= d;
dim_vec.push_back(d);
}
paddle_mobile::framework::Tensor input_tensor;
paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);
float *input_ptr = input_tensor.mutable_data<float>(dims);
memcpy(input_ptr, input,
numel * sizeof(float));
std::shared_ptr<paddle_mobile::framework::Tensor> output = pam_->Predict(input_tensor);
float *output_pointer = new float[output->numel()];
memcpy(output_pointer, output->data<float>(),
output->numel() * sizeof(float));
PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
[cpuResult toSetOutput: output_pointer];
[cpuResult toSetOutputSize: output->numel()];
return cpuResult;
}
- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
// printf(" predict one ");
std::lock_guard<std::mutex> lock(shared_mutex);
if (!loaded_) {
printf("PaddleMobile doesn't be loaded yet");
return nil;
......@@ -164,15 +277,13 @@ static std::mutex shared_mutex;
}
// input
std::vector<float> *predict_input = new std::vector<float>();
std::vector<float> predict_input;
for (int j = 0; j < numel; ++j) {
predict_input->push_back(dataPointer[j]);
predict_input.push_back(dataPointer[j]);
}
predict_input_ = predict_input;
// predict
std::vector<float> cpp_result = pam_->Predict(*predict_input, dim_vec);
std::vector<float> cpp_result = pam_->Predict(predict_input, dim_vec);
// result
long count = 0;
......
......@@ -14,6 +14,13 @@
#pragma once
#include "operators/prelu_op.h"
#include "operators/fusion_conv_add_prelu_op.h"
#include "operators/fusion_conv_add_add_prelu_op.h"
#include "operators/bilinear_interp_op.h"
#include "operators/conv_transpose_op.h"
#include "operators/crf_op.h"
#include "operators/flatten_op.h"
#include "operators/batchnorm_op.h"
#include "operators/box_coder_op.h"
#include "operators/concat_op.h"
......@@ -24,11 +31,18 @@
#include "operators/feed_op.h"
#include "operators/fetch_op.h"
#include "operators/fusion_conv_add.h"
#include "operators/fusion_conv_add_bn_op.h"
#include "operators/fusion_conv_add_relu_op.h"
#include "operators/fusion_conv_bn_add_relu_op.h"
#include "operators/fusion_conv_add_bn_relu_op.h"
#include "operators/fusion_conv_bn_relu_op.h"
#include "operators/fusion_dwconv_bn_relu_op.h"
#include "operators/fusion_elementwise_add_relu_op.h"
#include "operators/fusion_fc_op.h"
#include "operators/fusion_fc_relu_op.h"
#include "operators/gru_op.h"
#include "operators/im2sequence_op.h"
#include "operators/lookup_op.h"
#include "operators/lrn_op.h"
#include "operators/mul_op.h"
#include "operators/multiclass_nms_op.h"
......@@ -36,6 +50,11 @@
#include "operators/prior_box_op.h"
#include "operators/relu_op.h"
#include "operators/reshape_op.h"
#include "operators/resize_op.h"
#include "operators/scale_op.h"
#include "operators/shape_op.h"
#include "operators/sigmoid_op.h"
#include "operators/slice_op.h"
#include "operators/softmax_op.h"
#include "operators/split_op.h"
#include "operators/transpose_op.h"
......@@ -34,11 +34,9 @@ void PReluOp<Dtype, T>::InferShape() const {
* */
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
USE_OP_CPU(prelu);
REGISTER_OPERATOR_CPU(prelu, ops::PReluOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU(prelu);
REGISTER_OPERATOR_MALI_GPU(prelu, ops::PReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
......
......@@ -50,4 +50,14 @@ class PReluOp : public framework::OperatorWithKernel<
} // namespace operators
} // namespace paddle_mobile
#ifdef PADDLE_MOBILE_CPU
USE_OP_CPU(prelu);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU(prelu);
#endif
#ifdef PADDLE_MOBILE_FPGA
USE_OP_FPGA(prelu);
#endif
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册