未验证 提交 f0683804 编写于 作者: L liu zhengxi 提交者: GitHub

Add gather op on x86 platform (#2419)

* add gather op on x86 platform and add its unittests, test=develop
上级 af661abe
......@@ -29,6 +29,7 @@ add_kernel(sequence_expand_as_compute_x86 X86 basic SRCS sequence_expand_as_comp
# lite_cc_test(test_fc_compute_x86 SRCS fc_compute_test.cc DEPS fc_compute_x86)
# lite_cc_test(test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86)
add_kernel(gather_compute_x86 X86 basic SRCS gather_compute.cc DEPS ${lite_kernel_deps})
# lite_cc_test(test_scale_compute_x86 SRCS scale_compute_test.cc DEPS scale_compute_x86)
# lite_cc_test(test_dropout_compute_x86 SRCS dropout_compute_test.cc DEPS dropout_compute_x86)
# lite_cc_test(test_batch_norm_compute_x86 SRCS batch_norm_compute_test.cc DEPS batch_norm_compute_x86)
......@@ -65,6 +66,7 @@ add_kernel(matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS ${lite_kerne
lite_cc_test(test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86)
lite_cc_test(test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86)
lite_cc_test(test_gather_compute_x86 SRCS gather_compute_test.cc DEPS gather_compute_x86)
lite_cc_test(test_slice_compute_x86 SRCS slice_compute_test.cc DEPS slice_compute_x86)
lite_cc_test(test_squeeze_compute_x86 SRCS squeeze_compute_test.cc DEPS squeeze_compute_x86)
lite_cc_test(test_fill_constant_batch_size_like_compute_x86 SRCS fill_constant_batch_size_like_compute_test.cc DEPS fill_constant_batch_size_like_compute_x86)
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/gather_compute.h"
typedef paddle::lite::kernels::x86::GatherCompute<float, int32_t> GatherInt32;
typedef paddle::lite::kernels::x86::GatherCompute<float, int64_t> GatherInt64;
REGISTER_LITE_KERNEL(gather, kX86, kFloat, kNCHW, GatherInt32, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Index",
{LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
REGISTER_LITE_KERNEL(gather, kX86, kFloat, kNCHW, GatherInt64, int64_in)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Index",
{LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt64))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/types.h"
#include "lite/fluid/data_type.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
/**
* A thin wrapper for gathering on cpu tensor
* Return a new tensor from source tensor, gathered according to index
* input[src]: type-T source Tensor
* input[index]: type-IndexT index Tensor (1-D)
* return: output tensor
*/
template <typename T, typename IndexT = int>
void CPUGather(const lite::Tensor* src,
const lite::Tensor* index,
lite::Tensor* output) {
// check index of shape 1-D
if (index->dims().size() == 2) {
CHECK(index->dims()[1] == 1) << "Index(Input)'s dimension[1] should be 1 "
"when Index(input)'s dimension's size "
"equal to 2 in Gather(Op).";
} else {
CHECK(index->dims().size() == 1)
<< "Index(Input)'s dimension's size() should be 1 or 2 in Gather(Op).";
}
int64_t index_size = index->dims()[0];
auto src_dims = src->dims();
const T* p_src = src->data<T>();
const IndexT* p_index = index->data<IndexT>();
T* p_output = output->mutable_data<T>();
// slice size
int slice_size = 1;
for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
const size_t slice_bytes = slice_size * sizeof(T);
for (int64_t i = 0; i < index_size; ++i) {
int index_ = p_index[i];
memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
}
}
template <typename T, typename IndexT>
class GatherCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
using param_t = operators::GatherParam;
void Run() override {
auto& param = *param_.get_mutable<param_t>();
auto x = param.X;
auto index = param.Index;
auto out = param.Out;
out->mutable_data<T>();
if (x->dims().production() == 0) return;
/*
* Since there's no type defined for lite::Tensor in Paddle-Lite, then
* convert the Index's value to float which must be int32_t or int64_t and
* this supposes to cause no precision difference during inference just for
* now.
* Alternatively, if define the Tensor's type during registering, may cause
* a redefinition error.
*/
CPUGather<T, IndexT>(x, index, out);
}
virtual ~GatherCompute() = default;
};
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/gather_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
TEST(gather_x86, retrive_op) {
auto gather =
KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
"gather");
ASSERT_FALSE(gather.empty());
int cnt = 0;
for (auto item = gather.begin(); item != gather.end(); ++item) {
cnt++;
ASSERT_TRUE(*item);
}
ASSERT_EQ(cnt, 2);
}
TEST(gather_x86, int32_init) {
GatherCompute<float, int32_t> gather;
ASSERT_EQ(gather.precision(), PRECISION(kFloat));
ASSERT_EQ(gather.target(), TARGET(kX86));
}
TEST(gather_x86, int64_init) {
GatherCompute<float, int64_t> gather;
ASSERT_EQ(gather.precision(), PRECISION(kFloat));
ASSERT_EQ(gather.target(), TARGET(kX86));
}
template <typename T>
void test_case_1dims() {
lite::Tensor x, index, out;
std::vector<int64_t> x_shape{10};
x.Resize(lite::DDim(x_shape));
std::vector<int64_t> index_shape{3};
index.Resize(lite::DDim(index_shape));
std::vector<int64_t> out_shape{3};
out.Resize(lite::DDim(out_shape));
auto x_data = x.mutable_data<float>();
auto index_data = index.mutable_data<T>();
auto out_data = out.mutable_data<float>();
for (int64_t i = 0; i < x.dims().production(); ++i) {
x_data[i] = static_cast<float>(i);
}
std::vector<float> index_value{1, 3, 5};
for (int i = 0; i < index.dims().production(); ++i) {
index_data[i] = static_cast<T>(index_value[i]);
}
GatherCompute<float, T> gather;
operators::GatherParam param;
param.X = &x;
param.Index = &index;
param.Out = &out;
std::unique_ptr<KernelContext> ctx(new KernelContext);
ctx->As<X86Context>();
gather.SetContext(std::move(ctx));
gather.SetParam(param);
gather.Run();
std::vector<float> ref_data{1, 3, 5};
for (int i = 0; i < out.dims().production(); i++) {
EXPECT_NEAR(out_data[i], ref_data[i], 1e-5);
}
}
template <typename T>
void test_case_2dims() {
lite::Tensor x, index, out;
std::vector<int64_t> x_shape{10, 20};
x.Resize(lite::DDim(x_shape));
std::vector<int64_t> index_shape{3};
index.Resize(lite::DDim(index_shape));
std::vector<int64_t> out_shape{3, 20};
out.Resize(lite::DDim(out_shape));
auto x_data = x.mutable_data<float>();
auto index_data = index.mutable_data<T>();
auto out_data = out.mutable_data<float>();
for (int64_t i = 0; i < x.dims().production(); ++i) {
x_data[i] = static_cast<float>(i);
}
std::vector<float> index_value{1, 3, 5};
for (int i = 0; i < index.dims().production(); ++i) {
index_data[i] = static_cast<T>(index_value[i]);
}
GatherCompute<float, T> gather;
operators::GatherParam param;
param.X = &x;
param.Index = &index;
param.Out = &out;
std::unique_ptr<KernelContext> ctx(new KernelContext);
ctx->As<X86Context>();
gather.SetContext(std::move(ctx));
gather.SetParam(param);
gather.Run();
std::vector<float> ref_data(60);
for (int i = 0; i < 20; ++i) {
ref_data[i] = static_cast<float>(20 + i);
}
for (int i = 20; i < 40; ++i) {
ref_data[i] = static_cast<float>(40 + i);
}
for (int i = 40; i < 60; ++i) {
ref_data[i] = static_cast<float>(60 + i);
}
for (int i = 0; i < out.dims().production(); i++) {
EXPECT_NEAR(out_data[i], ref_data[i], 1e-5);
}
}
TEST(gather_x86, run_test_1dims) {
test_case_1dims<int32_t>();
test_case_1dims<int64_t>();
}
TEST(gather_x86, run_test_2dims) {
test_case_2dims<int32_t>();
test_case_2dims<int64_t>();
}
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(gather, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(gather, kX86, kFloat, kNCHW, int64_in);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册