Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ee367d30
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ee367d30
编写于
12月 24, 2018
作者:
qnqinan
提交者:
GitHub
12月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1365 from zhangyang0701/develop
reduce memory during initialization for FPGA track close
#1364
上级
8d7ceadb
c4a9ae1e
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
103 addition
and
56 deletion
+103
-56
src/fpga/V1/api.cpp
src/fpga/V1/api.cpp
+69
-51
src/fpga/V1/api.h
src/fpga/V1/api.h
+1
-0
src/fpga/V1/pe.cpp
src/fpga/V1/pe.cpp
+1
-0
src/fpga/common/fpga_common.h
src/fpga/common/fpga_common.h
+10
-0
src/framework/executor.cpp
src/framework/executor.cpp
+4
-0
src/framework/tensor.h
src/framework/tensor.h
+15
-0
src/framework/tensor_base.h
src/framework/tensor_base.h
+3
-0
src/operators/kernel/fpga/V1/deconv_add_kernel.cpp
src/operators/kernel/fpga/V1/deconv_add_kernel.cpp
+0
-3
src/operators/kernel/fpga/V1/deconv_add_relu_kernel.cpp
src/operators/kernel/fpga/V1/deconv_add_relu_kernel.cpp
+0
-2
未找到文件。
src/fpga/V1/api.cpp
浏览文件 @
ee367d30
...
...
@@ -52,6 +52,22 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor) {
ofm_tensor
->
reset_data_ptr
(
p
);
}
void
format_fp16_ofm
(
framework
::
Tensor
*
ofm_tensor
,
framework
::
DDim
dims
)
{
// auto dims = ofm_tensor->dims();
size_t
memory_size
=
0
;
if
(
dims
.
size
()
==
4
)
{
auto
channel
=
dims
[
1
],
height
=
dims
[
2
],
width
=
dims
[
3
];
memory_size
=
height
*
align_to_x
(
channel
*
width
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
}
else
if
(
dims
.
size
()
==
2
)
{
memory_size
=
align_to_x
(
dims
[
1
],
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
}
else
{
DLOG
<<
"Wrong ofm dimension"
;
}
auto
p
=
fpga_malloc
(
memory_size
);
memset
(
p
,
0
,
memory_size
);
ofm_tensor
->
reset_data_ptr
(
p
);
}
void
format_fp32_ofm
(
framework
::
Tensor
*
ofm_tensor
)
{
auto
dims
=
ofm_tensor
->
dims
();
size_t
memory_size
=
0
;
...
...
@@ -211,8 +227,9 @@ void expand_conv_arg(ConvArgs *arg) {
align_to_x
(
args
.
kernel
.
height
*
args
.
kernel
.
width
*
channel_per_group
,
FILTER_ELEMENT_ALIGNMENT
);
auto
output_amount_per_row
=
align_to_x
(
output_width
*
args
.
filter_num
,
IMAGE_ALIGNMENT
);
auto
output_amount_per_row
=
align_to_x
(
(
output_width
-
(
args
.
deconv_tx_param
.
omit_size
)
*
2
)
*
args
.
filter_num
,
IMAGE_ALIGNMENT
);
// find the opt partition strategy
uint64_t
res_win
;
...
...
@@ -243,7 +260,8 @@ void expand_conv_arg(ConvArgs *arg) {
auto
block_len
=
res_fit
;
auto
block_last
=
output_width
-
res_fit
*
(
block_num
-
1
);
auto
res_amount_per_row
=
output_width
*
args
.
filter_num
;
auto
res_amount_per_row
=
(
output_width
-
(
args
.
deconv_tx_param
.
omit_size
)
*
2
)
*
args
.
filter_num
;
auto
res_amount_per_row_pad
=
output_amount_per_row
-
res_amount_per_row
;
auto
image_block_amount_per_row
=
...
...
@@ -282,10 +300,14 @@ void expand_conv_arg(ConvArgs *arg) {
:
0
;
auto
cmd
=
0UL
|
(
args
.
relu_enabled
?
USE_RELU
:
0
)
|
USE_BIAS
;
auto
deconv_param
=
((
args
.
deconv_tx_param
.
deconv_en
)
<<
24
)
|
((
args
.
deconv_tx_param
.
sub_conv_num
)
<<
16
)
|
((
args
.
deconv_tx_param
.
omit_size
)
<<
0
);
(
*
arg
).
driver
.
image_address_phy
=
vaddr_to_paddr
(
args
.
image
.
address
);
(
*
arg
).
driver
.
sb_address_phy
=
vaddr_to_paddr
(
args
.
sb_address
);
(
*
arg
).
driver
.
filter_address_phy
=
vaddr_to_paddr
(
args
.
filter_address
);
(
*
arg
).
driver
.
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
(
*
arg
).
driver
.
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
)
+
args
.
deconv_tx_param
.
out_addr_offset
;
(
*
arg
).
driver
.
output_height
=
output_height
;
(
*
arg
).
driver
.
output_width
=
output_width
;
(
*
arg
).
driver
.
filter_per_group
=
filter_per_group
;
...
...
@@ -309,6 +331,7 @@ void expand_conv_arg(ConvArgs *arg) {
(
*
arg
).
driver
.
post_prog_full_cnt
=
post_prog_full_cnt
;
(
*
arg
).
driver
.
fpga_bias_scale_len
=
fpga_bias_scale_len
;
(
*
arg
).
driver
.
cmd
=
cmd
;
(
*
arg
).
driver
.
deconv_param
=
deconv_param
;
}
// expand_conv_arg()
void
expand_EW_arg
(
EWAddArgs
*
arg
)
{
...
...
@@ -357,6 +380,8 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
conv_arg
=
(
ConvArgs
*
)
fpga_malloc
(
arg
->
split_num
*
sizeof
(
ConvArgs
));
// NOLINT
memset
(
arg
->
conv_arg
,
0
,
arg
->
split_num
*
sizeof
(
struct
ConvArgs
));
arg
->
concat_arg
.
image_num
=
arg
->
split_num
;
arg
->
concat_arg
.
image_out
=
out_ptr
;
arg
->
concat_arg
.
scale_out
=
out
->
scale
;
...
...
@@ -444,20 +469,19 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
float
*
bs_ptr
)
{
auto
input_ptr
=
input
->
data
<
float
>
();
auto
filter_ptr
=
filter
->
data
<
float
>
();
auto
out_ptr
=
out
->
data
<
float
>
();
arg
->
group_num
=
(
uint32_t
)
group_num
;
arg
->
sub_conv_num
=
(
uint32_t
)
stride_h
;
arg
->
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
in
t
sub_conv_num
=
arg
->
sub_conv_num
;
uint32_
t
sub_conv_num
=
arg
->
sub_conv_num
;
int
sub_pad
=
deconv_filter
::
deconv_calc_sub_pad
((
int
)
filter
->
dims
()[
3
],
padding_w
,
stride_w
);
int
sub_filter_width
=
deconv_filter
::
deconv_get_sub_filter_axis
(
auto
sub_filter_width
=
(
uint32_t
)
deconv_filter
::
deconv_get_sub_filter_axis
(
(
int
)
filter
->
dims
()[
3
],
stride_w
);
int
sub_output_width
=
deconv_filter
::
deconv_get_sub_out_axis
(
auto
sub_output_width
=
(
uint32_t
)
deconv_filter
::
deconv_get_sub_out_axis
(
(
int
)
input
->
dims
()[
3
],
sub_pad
,
sub_filter_width
);
int
sub_output_height
=
deconv_filter
::
deconv_get_sub_out_axis
(
auto
sub_output_height
=
(
uint32_t
)
deconv_filter
::
deconv_get_sub_out_axis
(
(
int
)
input
->
dims
()[
2
],
sub_pad
,
sub_filter_width
);
arg
->
sub_output_width
=
(
uint32_t
)
sub_output_width
;
...
...
@@ -465,28 +489,25 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg
->
omit_size
=
(
uint32_t
)
deconv_filter
::
deconv_get_omit
(
stride_w
,
(
int
)
filter
->
dims
()[
3
],
padding_w
);
arg
->
output
.
address
=
out_ptr
;
arg
->
output
.
scale_address
=
out
->
scale
;
int
sub_channels
=
(
int
)
input
->
dims
()[
1
];
int
omit_size
=
arg
->
omit_size
;
auto
sub_channels
=
(
int
)
input
->
dims
()[
1
];
uint32_t
omit_size
=
arg
->
omit_size
;
int
real_out_width
=
sub_output_width
*
sub_conv_num
-
2
*
omit_size
;
int
real_out_height
=
sub_output_height
*
sub_conv_num
-
2
*
omit_size
;
int
sub_filter_num
=
sub_conv_num
*
(
arg
->
filter_num
);
int
conv_output_size
=
framework
::
DDim
dims_out_new
=
framework
::
make_ddim
(
{
1
,
arg
->
filter_num
,
sub_output_height
*
sub_conv_num
,
real_out_width
});
fpga
::
format_fp16_ofm
(
out
,
dims_out_new
);
auto
out_ptr
=
out
->
data
<
float
>
();
arg
->
output
.
address
=
(
half
*
)
out_ptr
+
omit_size
*
sizeof
(
half
)
*
(
align_to_x
(
real_out_width
*
arg
->
filter_num
,
IMAGE_ALIGNMENT
));
arg
->
output
.
scale_address
=
out
->
scale
;
uint32_t
conv_output_size
=
(
align_to_x
(
sub_output_width
*
sub_filter_num
,
IMAGE_ALIGNMENT
))
*
sub_output_height
;
int
ouput_size
=
conv_output_size
*
sub_conv_num
;
int
align_sub_filter_num
=
align_to_x
(
sub_filter_num
,
FILTER_NUM_ALIGNMENT
);
int
align_sub_filter_count
=
align_to_x
(
sub_filter_width
*
sub_filter_width
*
sub_channels
,
FILTER_ELEMENT_ALIGNMENT
);
int
align_conv_sub_filter_count
=
align_sub_filter_count
*
align_sub_filter_num
;
int
split_num
=
uint32_t
split_num
=
group_num
==
1
?
(
uint32_t
)
get_deconv_plit_num
(
filter
,
sub_conv_num
)
:
1
;
arg
->
split_conv_args
=
...
...
@@ -508,14 +529,10 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
(
float
**
)
fpga_malloc
(
split_num
*
sizeof
(
float
*
));
arg
->
split_conv_args
[
i
].
concat_arg
.
channel_num
=
(
uint32_t
*
)
fpga_malloc
(
split_num
*
sizeof
(
uint32_t
));
// arg->split_conv_args[i].concat_arg.image_out =
// fpga_malloc(conv_output_size * sizeof(half));
// arg->split_conv_args[i].concat_arg.scale_out = fpga_malloc(2 *
// sizeof(float));
}
int
filter_num_per_div
=
get_deconv_filter_num_per_div
(
filter
,
group_num
,
stride_w
);
auto
filter_num_per_div
=
(
uint32_t
)
get_deconv_filter_num_per_div
(
filter
,
group_num
,
stride_w
);
int
element_num
=
get_aligned_filter_element_num
(
(
int
)(
sub_channels
*
sub_filter_width
*
sub_filter_width
));
...
...
@@ -533,14 +550,21 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
align_to_x
(
residual
,
FILTER_NUM_ALIGNMENT
);
int
filter_sub_conv_offset
=
element_num
*
num_after_alignment
;
uint32_t
out_addr_offset
=
0
;
for
(
int
i
=
0
;
i
<
sub_conv_num
;
++
i
)
{
if
(
sub_conv_num
==
1
)
{
arg
->
split_conv_args
[
i
].
output
.
address
=
arg
->
output
.
address
;
arg
->
split_conv_args
[
i
].
output
.
scale_address
=
arg
->
output
.
scale_address
;
out_addr_offset
=
0
;
}
else
{
auto
ptr_output
=
(
half
*
)
fpga_malloc
(
conv_output_size
*
sizeof
(
half
));
arg
->
split_conv_args
[
i
].
output
.
address
=
(
void
*
)((
half
*
)
ptr_output
);
auto
ptr_output
=
(
half
*
)
out_ptr
;
out_addr_offset
=
sizeof
(
half
)
*
(
sub_conv_num
-
1
-
i
)
*
(
align_to_x
(
real_out_width
*
arg
->
filter_num
,
IMAGE_ALIGNMENT
));
arg
->
split_conv_args
[
i
].
output
.
address
=
(
void
*
)(
ptr_output
);
auto
ptr_output_scale
=
(
float
*
)
fpga_malloc
(
2
*
sizeof
(
float
));
arg
->
split_conv_args
[
i
].
output
.
scale_address
=
ptr_output_scale
;
}
...
...
@@ -556,6 +580,13 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
kernel
.
stride_w
=
1
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
kernel
.
stride_h
=
1
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
deconv_tx_param
.
deconv_en
=
1
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
deconv_tx_param
.
sub_conv_num
=
sub_conv_num
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
deconv_tx_param
.
omit_size
=
omit_size
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
deconv_tx_param
.
out_addr_offset
=
out_addr_offset
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
image
.
scale_address
=
input
->
scale
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
image
.
channels
=
(
uint32_t
)
sub_channels
;
...
...
@@ -568,10 +599,10 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
image
.
address
=
input_ptr
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
filter_scale_address
=
filter
->
scale
;
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
filter_num
=
(
uint32_t
)(
j
==
split_num
-
1
?
sub_filter_num
-
(
split_num
-
1
)
*
filter_num_per_div
// NOLINT
:
filter_num_per_div
);
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
filter_num
=
(
uint32_t
)(
j
==
split_num
-
1
?
sub_filter_num
-
(
split_num
-
1
)
*
filter_num_per_div
:
filter_num_per_div
);
size_t
filter_size
=
element_num
*
...
...
@@ -588,19 +619,6 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
fpga_flush
(
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
filter_address
,
filter_size
);
{
static
int
test_cnt
=
0
;
signed
char
result
=
0
;
if
(
test_cnt
<=
1
)
{
std
::
string
filename
=
"deconv_split_flt"
+
std
::
to_string
(
test_cnt
);
fpga
::
savefile
<
signed
char
>
(
filename
,
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
filter_address
,
filter_size
,
result
);
test_cnt
++
;
}
}
size_t
bs_align_num
=
align_to_x
(
arg
->
split_conv_args
[
i
].
conv_arg
[
j
].
filter_num
,
BS_NUM_ALIGNMENT
);
size_t
bs_size
=
2
*
bs_align_num
*
sizeof
(
float
);
...
...
src/fpga/V1/api.h
浏览文件 @
ee367d30
...
...
@@ -23,6 +23,7 @@ namespace fpga {
void
format_image
(
framework
::
Tensor
*
image_tensor
);
void
format_fp16_ofm
(
framework
::
Tensor
*
ofm_tensor
);
// only allocate memory
void
format_fp16_ofm
(
framework
::
Tensor
*
ofm_tensor
,
framework
::
DDim
dims
);
void
format_fp32_ofm
(
framework
::
Tensor
*
ofm_tensor
);
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
);
...
...
src/fpga/V1/pe.cpp
浏览文件 @
ee367d30
...
...
@@ -260,6 +260,7 @@ int ComputeBasicConv(const struct ConvArgs &args) {
reg_writeq
(
args
.
driver
.
res_row_data_align4_pad
,
0xcf8
);
reg_writeq
(
args
.
driver
.
prog_full_cnt
,
0xd08
);
reg_writeq
(
args
.
driver
.
post_prog_full_cnt
,
0xd10
);
reg_writeq
(
args
.
driver
.
deconv_param
,
0xd18
);
reg_writeq
(
args
.
driver
.
fpga_bias_scale_len
/
4
,
0xd20
);
reg_writeq
(
args
.
driver
.
cmd
,
REG_CONV_CMD
);
DLOG
<<
"before reg poll"
;
...
...
src/fpga/common/fpga_common.h
浏览文件 @
ee367d30
...
...
@@ -105,6 +105,8 @@ struct ConvDriverParam {
uint64_t
post_prog_full_cnt
;
uint64_t
fpga_bias_scale_len
;
uint64_t
cmd
;
uint64_t
deconv_param
;
};
struct
EWAddDriverParam
{
...
...
@@ -117,6 +119,13 @@ struct EWAddDriverParam {
uint64_t
coefficient
;
uint64_t
cmd
;
};
struct
DeconvTxParm
{
uint32_t
omit_size
;
uint32_t
sub_conv_num
;
uint32_t
deconv_en
;
uint32_t
out_addr_offset
;
};
#endif
struct
ConvArgs
{
...
...
@@ -136,6 +145,7 @@ struct ConvArgs {
#endif
#ifdef PADDLE_MOBILE_FPGA_V1
struct
DeconvTxParm
deconv_tx_param
;
struct
ConvDriverParam
driver
;
#endif
};
...
...
src/framework/executor.cpp
浏览文件 @
ee367d30
...
...
@@ -230,6 +230,10 @@ template <typename Device, typename T>
bool
Executor
<
Device
,
T
>::
varInputMemory
(
const
std
::
shared_ptr
<
VarDesc
>
&
var_desc
,
Variable
*
var
,
LoDTensor
*
tensor
)
const
{
#ifdef PADDLE_MOBILE_FPGA
tensor
->
init
(
typeid
(
float
));
return
true
;
#endif
auto
type
=
var_desc
->
Tensor_desc
().
DataType
();
switch
(
type
)
{
case
VARTYPE_TYPE_FP32
:
...
...
src/framework/tensor.h
浏览文件 @
ee367d30
...
...
@@ -202,6 +202,21 @@ class Tensor : public TensorBase {
inline
void
reset_data_ptr
(
void
*
p
)
{
((
PlaceholderImpl
*
)(
holder_
.
get
()))
->
ptr_
.
reset
((
uint8_t
*
)
p
);
// NOLINT
}
inline
void
*
init
(
std
::
type_index
type
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
PADDLE_MOBILE_ENFORCE
(
numel
()
>=
0
,
"the Tensor's numel must >=0."
)
int64_t
size
=
1
*
SizeOfType
(
type
);
if
(
holder_
==
nullptr
||
holder_
->
size
()
<
size
+
offset_
)
{
holder_
.
reset
(
new
PlaceholderImpl
(
size
,
type
));
offset_
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
float
scale
[
2
];
// scale[0]= MAX/127.0, scale[1]= 127.0/MAX
#endif
};
...
...
src/framework/tensor_base.h
浏览文件 @
ee367d30
...
...
@@ -91,6 +91,9 @@ class TensorBase {
}
inline
void
check_memory_size
()
const
{
#ifdef PADDLE_MOBILE_FPGA
return
;
#endif
PADDLE_MOBILE_ENFORCE
(
holder_
!=
nullptr
,
"Tensor holds no memory. Call Tensor::mutable_data first."
);
...
...
src/operators/kernel/fpga/V1/deconv_add_kernel.cpp
浏览文件 @
ee367d30
...
...
@@ -57,12 +57,9 @@ bool DeconvAddKernel<FPGA, float>::Init(FusionDeconvAddParam<FPGA> *param) {
int
element_num_per_div
=
fpga
::
get_deconv_filter_num_per_div
(
filter
,
param
->
Groups
(),
sub_conv_n
);
//
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
*
sub_conv_n
);
fpga
::
format_fp16_ofm
(
out
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
...
...
src/operators/kernel/fpga/V1/deconv_add_relu_kernel.cpp
浏览文件 @
ee367d30
...
...
@@ -61,8 +61,6 @@ bool DeconvAddReluKernel<FPGA, float>::Init(
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
*
sub_conv_n
);
fpga
::
format_fp16_ofm
(
out
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
relu_enabled
,
param
->
Groups
(),
param
->
Strides
()[
0
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录