提交 ecaa82d1 编写于 作者: R Ruilong Liu 提交者: GitHub

Merge pull request #515 from halsay/develop

fix lrn op in mali
......@@ -35,7 +35,6 @@ namespace ops = paddle_mobile::operators;
REGISTER_OPERATOR_CPU(batch_norm, ops::BatchNormOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU(batch_norm);
REGISTER_OPERATOR_MALI_GPU(batch_norm, ops::BatchNormOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
......
......@@ -76,7 +76,7 @@ namespace ops = paddle_mobile::operators;
REGISTER_OPERATOR_CPU(fusion_conv_add, ops::FusionConvAddOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(conv_add, ops::FusionConvAddOp);
REGISTER_OPERATOR_MALI_GPU(fusion_conv_add, ops::FusionConvAddOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
......@@ -96,7 +96,7 @@ static framework::FusionOpRegistrar convadd_registrar(
USE_OP_CPU(fusion_conv_add);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU(conv_add);
USE_OP_MALI_GPU(fusion_conv_add);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
......@@ -80,7 +80,7 @@ namespace ops = paddle_mobile::operators;
REGISTER_OPERATOR_CPU(fusion_fc, ops::FusionFcOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(fc, ops::FusionFcOp);
REGISTER_OPERATOR_MALI_GPU(fusion_fc, ops::FusionFcOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
......@@ -78,7 +78,7 @@ extern framework::FusionOpRegistrar fc_registrar(new FusionFcMatcher());
#ifndef CONV_CPU_REGISTER
#define CONV_CPU_REGISTER
static framework::FusionOpRegistrar fc_registrar(new FusionFcMatcher());
extern framework::FusionOpRegistrar fc_registrar(new FusionFcMatcher());
#endif
#endif
......@@ -93,7 +93,7 @@ static framework::FusionOpRegistrar fc_registrar(new FusionFcMatcher());
USE_OP_CPU(fusion_fc);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
USE_OP_MALI_GPU(fc);
USE_OP_MALI_GPU(fusion_fc);
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
......
文件模式从 100644 更改为 100755
......@@ -225,6 +225,7 @@ class AclParameters {
bool is_global_pool;
bool is_channel_concat;
bool is_bypass;
std::vector<framework::LoDTensor *> in_tensor;
};
......
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
......@@ -71,6 +71,7 @@ class AclBatchNormOp : public acl::ACLOperator {
bool Bypass_acl(const BatchNormParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_) {
bypass_acl = true;
......@@ -135,6 +136,10 @@ bool BatchNormKernel<GPU_MALI, float>::Init(BatchNormParam* param) {
acl_op = new AclBatchNormOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -147,15 +152,8 @@ void BatchNormKernel<GPU_MALI, float>::Compute(
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
acl_op->RunAcl((void*)input_data, (void*)output_data);
acl_op->RunAcl(args.input_data, args.output_data);
}
template class BatchNormKernel<GPU_MALI, float>;
......
......@@ -50,8 +50,6 @@ class AclConcatOp : public acl::ACLOperator {
T type;
for (int i = 0; i < input_data->size(); i++) {
const T* idata = (*input_data)[i]->data<T>();
const T* pdata = (*input_data)[i]->data<T>();
int in_batch = (*input_data)[i]->dims()[0];
int in_channels = (*input_data)[i]->dims()[1];
int in_width = (*input_data)[i]->dims()[2];
......@@ -75,6 +73,7 @@ class AclConcatOp : public acl::ACLOperator {
bool Bypass_acl(const ConcatParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_ || !args.is_channel_concat) {
bypass_acl = true;
......@@ -103,13 +102,17 @@ class AclConcatOp : public acl::ACLOperator {
};
template <>
bool ConcatKernel<GPU_MALI, float>::Init(const ConcatParam& param) const {
bool ConcatKernel<GPU_MALI, float>::Init(ConcatParam* param) {
AclConcatOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclConcatOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
acl_op = new AclConcatOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -121,15 +124,8 @@ void ConcatKernel<GPU_MALI, float>::Compute(const ConcatParam& param) const {
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
std::vector<framework::LoDTensor*> temp_data = args.in_tensor;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
acl_op->RunAcl(temp_data, (void*)output_data);
acl_op->RunAcl(args.in_tensor, args.output_data);
}
template class ConcatKernel<GPU_MALI, float>;
......
......@@ -55,7 +55,8 @@ class AclConvAddOp : public acl::ACLOperator {
set_operator_init_done();
this->force_bypass_acl_path_ = false;
check_direct_conv();
// check_direct_conv();
group() = args.num_group;
//[kernel_x, kernel_y, IFM, OFM]
new_tensor(weights(), weights_shape, args.weight_data);
//[OFM]
......@@ -63,8 +64,6 @@ class AclConvAddOp : public acl::ACLOperator {
new_tensor(biases(), biases_shape, args.biases_data);
}
group() = args.num_group;
//[width, height, IFM]
new_tensor(input(), input_shape, args.input_data);
//[width, height, OFM]
......@@ -79,6 +78,7 @@ class AclConvAddOp : public acl::ACLOperator {
bool Bypass_acl(const FusionConvAddParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_ || args.num_group >= 5) {
bypass_acl = true;
......@@ -196,14 +196,17 @@ class AclConvAddOp : public acl::ACLOperator {
};
template <>
bool ConvAddKernel<GPU_MALI, float>::Init(
const FusionConvAddParam& param) const {
bool ConvAddKernel<GPU_MALI, float>::Init(FusionConvAddParam* param) {
AclConvAddOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclConvAddOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
acl_op = new AclConvAddOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -216,15 +219,9 @@ void ConvAddKernel<GPU_MALI, float>::Compute(
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
acl_op->RunAcl((void*)input_data, (void*)output_data);
acl_op->RunAcl(args.input_data, args.output_data);
}
template class ConvAddKernel<GPU_MALI, float>;
......
......@@ -79,6 +79,7 @@ class AclConvOp : public acl::ACLOperator {
bool Bypass_acl(const ConvParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_ || args.num_group >= 5) {
bypass_acl = true;
......@@ -202,6 +203,10 @@ bool ConvKernel<GPU_MALI, float>::Init(ConvParam* param) {
acl_op = new AclConvOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -213,15 +218,8 @@ void ConvKernel<GPU_MALI, float>::Compute(const ConvParam& param) const {
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
acl_op->RunAcl((void*)input_data, (void*)output_data);
acl_op->RunAcl(args.input_data, args.output_data);
}
template class ConvKernel<GPU_MALI, float>;
......
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
......@@ -20,6 +20,7 @@ limitations under the License. */
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/kernel/central-arm-func/lrn_arm_func.h"
#include "operators/op_param.h"
namespace paddle_mobile {
......@@ -59,12 +60,15 @@ class AclLrnOp : public acl::ACLOperator {
acl_configure(lrn, this, norm_info);
}
void Set_bypass(bool bypass) { args.is_bypass = bypass; }
void RunAcl(void* input, void* output) {
acl::ACLOperator::acl_run(input, output);
}
bool Bypass_acl(const LrnParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_) {
bypass_acl = true;
......@@ -107,13 +111,18 @@ class AclLrnOp : public acl::ACLOperator {
};
template <>
bool LrnKernel<GPU_MALI, float>::Init(const LrnParam& param) const {
bool LrnKernel<GPU_MALI, float>::Init(LrnParam* param) {
AclLrnOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclLrnOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
acl_op = new AclLrnOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
acl_op->Set_bypass(true);
std::cout << "init acl failed" << std::endl;
return true;
}
return true;
}
......@@ -125,14 +134,14 @@ void LrnKernel<GPU_MALI, float>::Compute(const LrnParam& param) const {
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
acl::AclParameters& args = acl_op->getargs();
if (args.is_bypass) {
std::cout << "bypass op" << std::endl;
LrnCompute<float>(param);
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
for (int n = 0; n < args.batch; ++n) {
acl_op->RunAcl((void*)input_data, (void*)output_data);
input_data += args.in_depth * args.in_cols * args.in_rows;
......
文件模式从 100644 更改为 100755
......@@ -82,6 +82,7 @@ class AclPoolOp : public acl::ACLOperator {
bool Bypass_acl(const PoolParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_) {
bypass_acl = true;
......@@ -179,13 +180,17 @@ class AclPoolOp : public acl::ACLOperator {
};
template <>
bool PoolKernel<GPU_MALI, float>::Init(const PoolParam& param) const {
bool PoolKernel<GPU_MALI, float>::Init(PoolParam* param) {
AclPoolOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclPoolOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
acl_op = new AclPoolOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -197,14 +202,9 @@ void PoolKernel<GPU_MALI, float>::Compute(const PoolParam& param) const {
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
for (int n = 0; n < args.batch; ++n) {
acl_op->RunAcl((void*)input_data, (void*)output_data);
input_data += args.in_depth * args.in_cols * args.in_rows;
......
......@@ -41,10 +41,10 @@ class AclReluOp : public acl::ACLOperator {
acl::AclParameters& getargs() { return args; }
void InitAclLayer(const ReluParam& param) {
setTargetHint(acl::TargetHint::OPENCL);
arm_compute::TensorShape input_shape(args.in_cols * args.in_rows *
args.in_depth * args.batch);
arm_compute::TensorShape output_shape(args.in_cols * args.in_rows *
args.in_depth * args.out_num);
arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
args.in_depth, args.batch);
arm_compute::TensorShape output_shape(args.in_cols, args.in_rows,
args.in_depth, args.out_num);
// arm_compute::TensorShape weights_shape(
// args.filter_cols, args.filter_rows, args.in_depth, args.out_depth);
// arm_compute::TensorShape biases_shape(args.out_depth);
......@@ -71,6 +71,7 @@ class AclReluOp : public acl::ACLOperator {
bool Bypass_acl(const ReluParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_) {
bypass_acl = true;
......@@ -99,13 +100,17 @@ class AclReluOp : public acl::ACLOperator {
};
template <>
bool ReluKernel<GPU_MALI, float>::Init(const ReluParam& param) const {
bool ReluKernel<GPU_MALI, float>::Init(ReluParam* param) {
AclReluOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclReluOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
acl_op = new AclReluOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -117,15 +122,8 @@ void ReluKernel<GPU_MALI, float>::Compute(const ReluParam& param) const {
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
acl_op->RunAcl((void*)input_data, (void*)output_data);
acl_op->RunAcl(args.input_data, args.output_data);
}
template class ReluKernel<GPU_MALI, float>;
......
文件模式从 100644 更改为 100755
......@@ -61,6 +61,7 @@ class AclSoftmaxOp : public acl::ACLOperator {
bool Bypass_acl(const SoftmaxParam& param) {
bool bypass_acl = false;
AclParametersByContext(param);
InitAclLayer(param);
// for performance, more groups impact GPU performance
if (this->force_bypass_acl_path_) {
bypass_acl = true;
......@@ -96,13 +97,17 @@ class AclSoftmaxOp : public acl::ACLOperator {
};
template <>
bool SoftmaxKernel<GPU_MALI, float>::Init(const SoftmaxParam& param) const {
bool SoftmaxKernel<GPU_MALI, float>::Init(SoftmaxParam* param) {
AclSoftmaxOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclSoftmaxOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
acl_op = new AclSoftmaxOp<GPU_MALI, float>();
this->SetAclOp((void*)acl_op, (void*)this);
}
if (acl_op->Bypass_acl(*param)) {
std::cout << "init acl failed" << std::endl;
return false;
}
return true;
}
......@@ -114,14 +119,10 @@ void SoftmaxKernel<GPU_MALI, float>::Compute(const SoftmaxParam& param) const {
if (acl_op == nullptr) {
return;
}
if (acl_op->Bypass_acl(param)) {
std::cout << "init acl failed" << std::endl;
return;
}
acl::AclParameters& args = acl_op->getargs();
const float* input_data = (const float*)args.input_data;
const float* output_data = (const float*)args.output_data;
acl_op->InitAclLayer(param);
for (int n = 0; n < args.out_num; ++n) {
acl_op->RunAcl((void*)input_data, (void*)output_data);
input_data += args.in_depth;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册