Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e83989c8
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e83989c8
编写于
3月 21, 2019
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix bugs in multi-threads sgemm and fuse conv/add/bn/relu
上级
c6022a6b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
26 addition
and
6 deletion
+26
-6
src/framework/cl/cl_tensor.h
src/framework/cl/cl_tensor.h
+16
-0
src/framework/context.h
src/framework/context.h
+2
-1
src/operators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
...rators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
+4
-1
src/operators/math/gemm/executor.h
src/operators/math/gemm/executor.h
+4
-4
未找到文件。
src/framework/cl/cl_tensor.h
浏览文件 @
e83989c8
...
...
@@ -137,14 +137,18 @@ class CLTensor : TensorBase {
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_ONLY
|
CL_MEM_COPY_HOST_PTR
,
size
,
reinterpret_cast
<
void
*>
(
input
),
NULL
)),
size_
(
size
),
capatity_
(
size
),
type_
(
type
),
context_
(
context
),
command_queue_
(
command_queue
)
{}
PlaceholderImpl
(
size_t
size
,
std
::
type_index
type
,
cl_context
context
,
cl_command_queue
command_queue
)
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_WRITE
,
size
,
NULL
,
NULL
)),
size_
(
size
),
capatity_
(
size
),
type_
(
type
),
context_
(
context
),
command_queue_
(
command_queue
)
{}
virtual
size_t
size
()
const
{
return
size_
;
}
...
...
@@ -155,13 +159,25 @@ class CLTensor : TensorBase {
virtual
void
set_type
(
std
::
type_index
type
)
{
type_
=
type
;
}
virtual
void
resize
(
size_t
size
)
{
if
(
size
>
capatity_
)
{
capatity_
=
size
;
ptr_
.
reset
(
clCreateBuffer
(
context_
,
CL_MEM_READ_WRITE
,
capatity_
,
NULL
,
NULL
));
}
size_
=
size
;
}
std
::
unique_ptr
<
_cl_mem
,
CLMemDeleter
>
ptr_
;
size_t
size_
;
size_t
capatity_
;
/* the current type of memory */
std
::
type_index
type_
;
cl_context
context_
;
cl_command_queue
command_queue_
;
};
};
...
...
src/framework/context.h
浏览文件 @
e83989c8
...
...
@@ -68,7 +68,8 @@ struct CPUContext {
};
inline
void
set_global_num_threads
(
int
threads
)
{
CPUContext
::
Context
()
->
set_num_threads
(
threads
);
// CPUContext::Context()->set_num_threads(threads);
CPUContext
::
Context
()
->
num_threads
=
threads
;
}
inline
int
get_global_num_threads
()
{
...
...
src/operators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
浏览文件 @
e83989c8
...
...
@@ -30,12 +30,14 @@ bool ConvAddBNReluKernel<CPU, float>::Init(
const
Tensor
*
variance
=
param
->
InputVariance
();
const
Tensor
*
scale
=
param
->
InputScale
();
const
Tensor
*
bias
=
param
->
InputBias
();
const
Tensor
*
bias1
=
param
->
Bias
();
const
float
epsilon
=
param
->
Epsilon
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
bias1_ptr
=
bias1
->
data
<
float
>
();
const
int
C
=
mean
->
numel
();
float
inv_std_ptr
[
C
];
...
...
@@ -52,7 +54,8 @@ bool ConvAddBNReluKernel<CPU, float>::Init(
auto
new_bias_ptr
=
new_bias
->
mutable_data
<
float
>
({
C
});
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
+
(
bias1_ptr
[
i
]
-
mean_ptr
[
i
])
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
}
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
...
...
src/operators/math/gemm/executor.h
浏览文件 @
e83989c8
...
...
@@ -107,8 +107,8 @@ class GemmExecutor : public Executor {
// gettimeofday(&tv_begin,NULL);
if
(
M_
>
N_
)
{
int
nblock
=
CeilDiv
(
N_
,
Strategy
::
out_width
())
*
Strategy
::
out_width
();
lhs_worksize_
=
sizeof
(
Itype
)
*
lhs_tile_num_
*
K_
;
rhs_worksize_
=
sizeof
(
Itype
)
*
K_
*
nblock
*
num_threads_
;
lhs_worksize_
=
sizeof
(
Itype
)
*
lhs_tile_num_
*
K_
*
num_threads_
;
rhs_worksize_
=
sizeof
(
Itype
)
*
K_
*
nblock
;
out_worksize_
=
sizeof
(
Otype
)
*
lhs_tile_num_
*
nblock
*
num_threads_
;
ldc_
=
nblock
;
}
else
{
...
...
@@ -133,7 +133,7 @@ class GemmExecutor : public Executor {
if
(
M_
>
N_
)
{
strategy_
.
pack_rhs
(
K_
,
N_
,
B
,
ldb
,
rhs_workspace_
,
true
);
#pragma omp parallel for
if (M_ > 128)
#pragma omp parallel for
for
(
int
lhs_block
=
0
;
lhs_block
<
M_
;
lhs_block
+=
lhs_tile_num_
)
{
int
lhs_range
=
std
::
min
(
M_
-
lhs_block
,
lhs_tile_num_
);
#ifdef _OPENMP
...
...
@@ -165,7 +165,7 @@ class GemmExecutor : public Executor {
}
else
{
strategy_
.
pack_lhs
(
M_
,
K_
,
A
,
lda
,
lhs_workspace_
,
true
);
#pragma omp parallel for
if (N_ > 128)
#pragma omp parallel for
for
(
int
rhs_block
=
0
;
rhs_block
<
N_
;
rhs_block
+=
rhs_tile_num_
)
{
int
rhs_range
=
std
::
min
(
N_
-
rhs_block
,
rhs_tile_num_
);
#ifdef _OPENMP
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录