Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e81b0006
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e81b0006
编写于
2月 12, 2020
作者:
Z
zhupengyang
提交者:
GitHub
2月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] reahspe out for mul and enhance ut (#2847)
上级
5750c483
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
50 addition
and
192 deletion
+50
-192
lite/kernels/npu/bridges/matmul_op.cc
lite/kernels/npu/bridges/matmul_op.cc
+7
-4
lite/kernels/npu/bridges/mul_op.cc
lite/kernels/npu/bridges/mul_op.cc
+38
-16
lite/kernels/npu/bridges/mul_op_test.cc
lite/kernels/npu/bridges/mul_op_test.cc
+0
-114
lite/operators/mul_op.cc
lite/operators/mul_op.cc
+0
-56
lite/tests/kernels/mul_compute_test.cc
lite/tests/kernels/mul_compute_test.cc
+5
-2
未找到文件。
lite/kernels/npu/bridges/matmul_op.cc
浏览文件 @
e81b0006
...
@@ -35,14 +35,14 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -35,14 +35,14 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
x_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
Find
Mutable
Tensor
(
x_name
);
auto
x
=
scope
->
FindTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
y_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetInputDeclType
(
"Y"
);
auto
y_type
=
kernel
->
GetInputDeclType
(
"Y"
);
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
y
=
scope
->
Find
Mutable
Tensor
(
y_name
);
auto
y
=
scope
->
FindTensor
(
y_name
);
auto
y_dims
=
y
->
dims
();
auto
y_dims
=
y
->
dims
();
if
(
x_dims
.
size
()
==
1
||
x_dims
.
size
()
!=
y_dims
.
size
())
{
if
(
x_dims
.
size
()
==
1
||
x_dims
.
size
()
!=
y_dims
.
size
())
{
...
@@ -50,6 +50,10 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -50,6 +50,10 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
<<
"[NPU] dims size of x and y must be same and greater than 1."
;
<<
"[NPU] dims size of x and y must be same and greater than 1."
;
return
FAILED
;
return
FAILED
;
}
}
if
(
y_dims
.
size
()
==
2
&&
!
y
->
persistable
())
{
LOG
(
WARNING
)
<<
"[NPU] y must be const if y is 2-D"
;
return
FAILED
;
}
if
(
x_dims
.
size
()
>
2
&&
if
(
x_dims
.
size
()
>
2
&&
x_dims
.
count
(
0
,
x_dims
.
size
()
-
2
)
!=
x_dims
.
count
(
0
,
x_dims
.
size
()
-
2
)
!=
y_dims
.
count
(
0
,
y_dims
.
size
()
-
2
))
{
y_dims
.
count
(
0
,
y_dims
.
size
()
-
2
))
{
...
@@ -61,7 +65,7 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -61,7 +65,7 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
CHECK
(
out_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
out_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
out_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
out_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
out
=
scope
->
Find
Mutable
Tensor
(
out_name
);
auto
out
=
scope
->
FindTensor
(
out_name
);
auto
out_dims
=
out
->
dims
();
auto
out_dims
=
out
->
dims
();
bool
transpose_x
=
op_info
->
GetAttr
<
bool
>
(
"transpose_X"
);
bool
transpose_x
=
op_info
->
GetAttr
<
bool
>
(
"transpose_X"
);
...
@@ -80,7 +84,6 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -80,7 +84,6 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
x_node
=
graph
->
Add
(
x_name
,
*
x
);
x_node
=
graph
->
Add
(
x_name
,
*
x
);
}
}
// Y node which only supports 2-D persistable tensor
std
::
shared_ptr
<
Node
>
y_node
=
nullptr
;
std
::
shared_ptr
<
Node
>
y_node
=
nullptr
;
if
(
graph
->
Has
(
y_name
))
{
if
(
graph
->
Has
(
y_name
))
{
y_node
=
graph
->
Get
(
y_name
);
y_node
=
graph
->
Get
(
y_name
);
...
...
lite/kernels/npu/bridges/mul_op.cc
浏览文件 @
e81b0006
...
@@ -36,18 +36,27 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -36,18 +36,27 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
x_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
Find
Mutable
Tensor
(
x_name
);
auto
x
=
scope
->
FindTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
y_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetInputDeclType
(
"Y"
);
auto
y_type
=
kernel
->
GetInputDeclType
(
"Y"
);
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
y
=
scope
->
Find
Mutable
Tensor
(
y_name
);
auto
y
=
scope
->
FindTensor
(
y_name
);
auto
y_dims
=
y
->
dims
();
auto
y_dims
=
y
->
dims
();
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
CHECK
(
out_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
out_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
out_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
CHECK
(
out_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
out
=
scope
->
FindTensor
(
out_name
);
auto
out_dims
=
out
->
dims
();
if
(
out_dims
.
size
()
>
4
)
{
LOG
(
WARNING
)
<<
"[NPU] not supported above 4-D."
;
return
FAILED
;
}
int
x_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"x_num_col_dims"
);
int
x_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"x_num_col_dims"
);
int
y_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"y_num_col_dims"
);
int
y_num_col_dims
=
op_info
->
GetAttr
<
int
>
(
"y_num_col_dims"
);
int
m
=
x_dims
.
Slice
(
0
,
x_num_col_dims
).
production
();
int
m
=
x_dims
.
Slice
(
0
,
x_num_col_dims
).
production
();
...
@@ -58,20 +67,20 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -58,20 +67,20 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
VLOG
(
3
)
<<
"m:"
<<
m
<<
",n:"
<<
n
<<
",k:"
<<
k
;
VLOG
(
3
)
<<
"m:"
<<
m
<<
",n:"
<<
n
<<
",k:"
<<
k
;
VLOG
(
3
)
<<
"x_name:"
<<
x_name
<<
", is data: "
<<
graph
->
Has
(
x_name
);
VLOG
(
3
)
<<
"x_name:"
<<
x_name
<<
", is data: "
<<
graph
->
Has
(
x_name
);
VLOG
(
3
)
<<
"y_name:"
<<
y_name
<<
", is data: "
<<
graph
->
Has
(
y_name
);
VLOG
(
3
)
<<
"y_name:"
<<
y_name
<<
", is data: "
<<
graph
->
Has
(
y_name
);
CHECK
(
graph
->
Has
(
x_name
))
<<
"[NPU] MatMul in HiAI DDK only support X is data, Y is const yet."
;
// X node which supports persistable and non-persistable tensor, and
// X node which supports persistable and non-persistable tensor, and
// reshape to (m, k)
// reshape to (m, k)
std
::
shared_ptr
<
Node
>
x_node
=
nullptr
;
std
::
shared_ptr
<
Node
>
x_node
=
nullptr
;
if
(
graph
->
Has
(
x_name
))
{
if
(
graph
->
Has
(
x_name
))
{
x_node
=
graph
->
Get
(
x_name
);
x_node
=
graph
->
Get
(
x_name
);
auto
reshaped_x_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
x_name
+
"/reshape"
);
if
(
x_dims
.
size
()
!=
2
)
{
auto
reshaped_x_op
=
reshaped_x_node
->
data
<
ge
::
op
::
Reshape
>
();
auto
reshaped_x_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
x_name
+
"/reshape"
);
reshaped_x_op
->
set_input_tensor
(
*
x_node
->
data
());
auto
reshaped_x_op
=
reshaped_x_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_x_op
->
set_attr_shape
({
m
,
k
});
reshaped_x_op
->
set_input_tensor
(
*
x_node
->
data
());
reshaped_x_op
->
set_attr_axis
(
0
);
reshaped_x_op
->
set_attr_shape
({
m
,
k
});
x_node
=
reshaped_x_node
;
reshaped_x_op
->
set_attr_axis
(
0
);
x_node
=
reshaped_x_node
;
}
}
else
{
}
else
{
x_node
=
graph
->
Add
(
x_name
,
*
x
,
{
m
,
k
});
x_node
=
graph
->
Add
(
x_name
,
*
x
,
{
m
,
k
});
}
}
...
@@ -81,12 +90,14 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -81,12 +90,14 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
std
::
shared_ptr
<
Node
>
y_node
=
nullptr
;
std
::
shared_ptr
<
Node
>
y_node
=
nullptr
;
if
(
graph
->
Has
(
y_name
))
{
if
(
graph
->
Has
(
y_name
))
{
y_node
=
graph
->
Get
(
y_name
);
y_node
=
graph
->
Get
(
y_name
);
auto
reshaped_y_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
y_name
+
"/reshape"
);
if
(
y_dims
.
size
()
!=
2
)
{
auto
reshaped_y_op
=
reshaped_y_node
->
data
<
ge
::
op
::
Reshape
>
();
auto
reshaped_y_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
y_name
+
"/reshape"
);
reshaped_y_op
->
set_input_tensor
(
*
y_node
->
data
());
auto
reshaped_y_op
=
reshaped_y_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_y_op
->
set_attr_shape
({
k
,
n
});
reshaped_y_op
->
set_input_tensor
(
*
y_node
->
data
());
reshaped_y_op
->
set_attr_axis
(
0
);
reshaped_y_op
->
set_attr_shape
({
k
,
n
});
y_node
=
reshaped_y_node
;
reshaped_y_op
->
set_attr_axis
(
0
);
y_node
=
reshaped_y_node
;
}
}
else
{
}
else
{
y_node
=
graph
->
Add
(
y_name
,
*
y
,
{
k
,
n
});
y_node
=
graph
->
Add
(
y_name
,
*
y
,
{
k
,
n
});
}
}
...
@@ -96,6 +107,17 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -96,6 +107,17 @@ int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
mul_op
=
mul_node
->
data
<
ge
::
op
::
MatMul
>
();
auto
mul_op
=
mul_node
->
data
<
ge
::
op
::
MatMul
>
();
mul_op
->
set_input_x1
(
*
x_node
->
data
());
mul_op
->
set_input_x1
(
*
x_node
->
data
());
mul_op
->
set_input_x2
(
*
y_node
->
data
());
mul_op
->
set_input_x2
(
*
y_node
->
data
());
if
(
out_dims
.
size
()
!=
2
)
{
auto
reshaped_out_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
out_name
);
auto
reshaped_out_op
=
reshaped_out_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_out_op
->
set_input_tensor
(
*
mul_node
->
data
());
auto
out_shape
=
out_dims
.
Vectorize
();
reshaped_out_op
->
set_attr_shape
(
ge
::
AttrValue
::
LIST_INT
(
out_shape
.
begin
(),
out_shape
.
end
()));
reshaped_out_op
->
set_attr_axis
(
0
);
}
return
REBUILD_WHEN_SHAPE_CHANGED
;
return
REBUILD_WHEN_SHAPE_CHANGED
;
}
}
...
...
lite/kernels/npu/bridges/mul_op_test.cc
已删除
100644 → 0
浏览文件 @
5750c483
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/mul_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
npu
{
namespace
bridges
{
void
mul_ref
(
const
std
::
shared_ptr
<
operators
::
MulOpLite
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
y
=
scope
->
FindVar
(
op_info
->
Input
(
"Y"
).
front
())
->
GetMutable
<
Tensor
>
();
auto
out
=
scope
->
FindVar
(
op_info
->
Output
(
"Out"
).
front
())
->
GetMutable
<
Tensor
>
();
int32_t
x_num_col_dims
=
op_info
->
GetAttr
<
int32_t
>
(
"x_num_col_dims"
);
int32_t
y_num_col_dims
=
op_info
->
GetAttr
<
int32_t
>
(
"y_num_col_dims"
);
auto
x_data
=
x
->
mutable_data
<
float
>
();
auto
y_data
=
y
->
mutable_data
<
float
>
();
auto
out_data
=
out
->
mutable_data
<
float
>
();
auto
x_mat_dims
=
x
->
dims
().
Flatten2D
(
x_num_col_dims
);
auto
y_mat_dims
=
y
->
dims
().
Flatten2D
(
y_num_col_dims
);
CHECK_EQ
(
x_mat_dims
[
1
],
y_mat_dims
[
0
]);
const
int
M
=
x_mat_dims
[
0
];
const
int
K
=
x_mat_dims
[
1
];
const
int
N
=
y_mat_dims
[
1
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
out_data
[
m
*
N
+
n
]
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
out_data
[
m
*
N
+
n
]
+=
x_data
[
m
*
K
+
k
]
*
y_data
[
k
*
N
+
n
];
}
}
}
}
void
test_mul
(
const
std
::
vector
<
int64_t
>&
x_shape
,
const
std
::
vector
<
int64_t
>&
y_shape
,
int
x_num_col_dims
,
int
y_num_col_dims
)
{
const
auto
&
bridges
=
lite
::
kernels
::
npu
::
bridges
::
Factory
::
Instance
();
const
auto
&
supported_lists
=
bridges
.
AllFunctions
();
CHECK
(
bridges
.
HasType
(
"mul"
));
Scope
scope
;
std
::
string
x_var_name
(
"X"
);
std
::
string
y_var_name
(
"Y"
);
std
::
string
out_var_name
(
"Out"
);
std
::
string
out_ref_var_name
(
"out_ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
y
=
scope
.
Var
(
y_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
x_shape
);
y
->
Resize
(
y_shape
);
FillTensor
<
float
,
int
>
(
x
);
FillTensor
<
float
,
int
>
(
y
);
// create mul op
cpp
::
OpDesc
mul_op_desc
;
mul_op_desc
.
SetType
(
"mul"
);
mul_op_desc
.
SetInput
(
"X"
,
{
x_var_name
});
mul_op_desc
.
SetInput
(
"Y"
,
{
y_var_name
});
mul_op_desc
.
SetOutput
(
"Out"
,
{
out_var_name
});
mul_op_desc
.
SetAttr
(
"x_num_col_dims"
,
static_cast
<
int
>
(
x_num_col_dims
));
mul_op_desc
.
SetAttr
(
"y_num_col_dims"
,
static_cast
<
int
>
(
y_num_col_dims
));
auto
mul_op
=
CreateOp
<
operators
::
MulOpLite
>
(
mul_op_desc
,
&
scope
);
LauchOp
(
mul_op
,
{
x_var_name
},
{
out_var_name
});
out_ref
->
CopyDataFrom
(
*
out
);
mul_ref
(
mul_op
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-5
);
}
}
TEST
(
NPUBridges
,
mul
)
{
test_mul
({
1
,
8
,
8
,
1
},
{
1
,
8
,
2
,
2
},
2
,
2
);
test_mul
({
1
,
5
,
5
,
1
},
{
1
,
5
,
7
,
7
},
2
,
2
);
test_mul
({
1
,
4
,
1
,
1
},
{
4
,
8
},
1
,
1
);
}
}
// namespace bridges
}
// namespace npu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
mul
);
USE_NPU_BRIDGE
(
mul
);
lite/operators/mul_op.cc
浏览文件 @
e81b0006
...
@@ -32,21 +32,6 @@ bool MulOpLite::CheckShape() const {
...
@@ -32,21 +32,6 @@ bool MulOpLite::CheckShape() const {
CHECK_GT_OR_FALSE
(
x_dims
.
size
(),
static_cast
<
size_t
>
(
param_
.
x_num_col_dims
));
CHECK_GT_OR_FALSE
(
x_dims
.
size
(),
static_cast
<
size_t
>
(
param_
.
x_num_col_dims
));
CHECK_GT_OR_FALSE
(
y_dims
.
size
(),
static_cast
<
size_t
>
(
param_
.
y_num_col_dims
));
CHECK_GT_OR_FALSE
(
y_dims
.
size
(),
static_cast
<
size_t
>
(
param_
.
y_num_col_dims
));
// #ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
// auto x_mat_dims =
// framework::flatten_to_2d(x_dims.data(), param_.x_num_col_dims);
// auto y_mat_dims =
// framework::flatten_to_2d(y_dims.data(), param_.y_num_col_dims);
// PADDLE_ENFORCE_EQ(x_mat_dims[1],
// y_mat_dims[0],
// "First matrix's width must be equal with second
// matrix's"
// "height. %s, %s",
// x_mat_dims[1],
// y_mat_dims[0]);
// #endif
return
true
;
return
true
;
}
}
...
@@ -73,49 +58,8 @@ bool MulOpLite::InferShape() const {
...
@@ -73,49 +58,8 @@ bool MulOpLite::InferShape() const {
return
true
;
return
true
;
}
}
#ifdef LITE_WITH_TRAIN
bool
MulGradOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
y
);
CHECK_OR_FALSE
(
param_
.
output_grad
);
return
true
;
}
bool
MulGradOpLite
::
InferShape
()
const
{
if
(
param_
.
x_grad
)
param_
.
x_grad
->
Resize
(
param_
.
x
->
dims
());
if
(
param_
.
y_grad
)
param_
.
y_grad
->
Resize
(
param_
.
y
->
dims
());
return
true
;
}
bool
MulGradOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
auto
X_name
=
op_desc
.
Input
(
"X"
).
front
();
auto
Y_name
=
op_desc
.
Input
(
"Y"
).
front
();
auto
Out_grad_name
=
op_desc
.
Input
(
framework
::
GradVarName
(
"Out"
)).
front
();
if
(
op_desc
.
Output
(
framework
::
GradVarName
(
"X"
)).
size
())
{
auto
X_grad_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"X"
)).
front
();
param_
.
x_grad
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
X_grad_name
);
}
if
(
op_desc
.
Output
(
framework
::
GradVarName
(
"Y"
)).
size
())
{
auto
Y_grad_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Y"
)).
front
();
param_
.
y_grad
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
Y_grad_name
);
}
param_
.
x
=
GetVar
<
lite
::
Tensor
>
(
scope
,
X_name
);
param_
.
y
=
GetVar
<
lite
::
Tensor
>
(
scope
,
Y_name
);
param_
.
output_grad
=
GetVar
<
lite
::
Tensor
>
(
scope
,
Out_grad_name
);
return
true
;
}
#endif
}
// namespace operators
}
// namespace operators
}
// namespace lite
}
// namespace lite
}
// namespace paddle
}
// namespace paddle
REGISTER_LITE_OP
(
mul
,
paddle
::
lite
::
operators
::
MulOpLite
);
REGISTER_LITE_OP
(
mul
,
paddle
::
lite
::
operators
::
MulOpLite
);
#ifdef LITE_WITH_TRAIN
REGISTER_LITE_OP
(
mul_grad
,
paddle
::
lite
::
operators
::
MulGradOpLite
);
#endif
lite/tests/kernels/mul_compute_test.cc
浏览文件 @
e81b0006
...
@@ -99,7 +99,7 @@ class MulComputeTester : public arena::TestCase {
...
@@ -99,7 +99,7 @@ class MulComputeTester : public arena::TestCase {
std
::
vector
<
float
>
y
(
y_dims_
.
production
());
std
::
vector
<
float
>
y
(
y_dims_
.
production
());
fill_data_rand
(
y
.
data
(),
-
1.
f
,
1.
f
,
y_dims_
.
production
());
fill_data_rand
(
y
.
data
(),
-
1.
f
,
1.
f
,
y_dims_
.
production
());
SetCommonTensor
(
y_
,
y_dims_
,
y
.
data
());
SetCommonTensor
(
y_
,
y_dims_
,
y
.
data
()
,
{},
true
);
}
}
};
};
...
@@ -123,7 +123,10 @@ TEST(Mul, precision) {
...
@@ -123,7 +123,10 @@ TEST(Mul, precision) {
LOG
(
INFO
)
<<
"test mul op"
;
LOG
(
INFO
)
<<
"test mul op"
;
float
abs_error
=
2e-5
;
float
abs_error
=
2e-5
;
Place
place
;
Place
place
;
#if defined(LITE_WITH_XPU)
#if defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
abs_error
=
1e-2
;
// use fp16 in npu
#elif defined(LITE_WITH_XPU)
place
=
TARGET
(
kXPU
);
place
=
TARGET
(
kXPU
);
#else
#else
return
;
return
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录