Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e68b36f5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e68b36f5
编写于
2月 24, 2020
作者:
Y
yiicy
提交者:
GitHub
2月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[DEMO] update mask detection demo, test=develop (#2988)
update mask detection demo
上级
0ac026c9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
83 addition
and
24 deletion
+83
-24
lite/demo/cxx/README.md
lite/demo/cxx/README.md
+5
-1
lite/demo/cxx/mask_detection/mask_detection.cc
lite/demo/cxx/mask_detection/mask_detection.cc
+78
-23
未找到文件。
lite/demo/cxx/README.md
浏览文件 @
e68b36f5
...
...
@@ -70,7 +70,11 @@ export LD_LIBRARY_PATH=/data/local/tmp/:$LD_LIBRARY_PATH
adb pull /data/local/tmp/test_mask_detection_result.jpg ./
```
![
test_mask_detection_result
](
https://user-images.githubusercontent.com/7383104/74279176-6200cd00-4d55-11ea-9fc0-83cfc2b3b37d.jpg
)
![
test_mask_detection_result
](
https://user-images.githubusercontent.com/7383104/75131866-bae64300-570f-11ea-9cad-17acfaea1cfc.jpg
)
注:mask_detetion.cc 中的缩放因子shrink, 检测阈值detect_threshold, 可供自由配置:
-
缩放因子越大,模型运行速度越慢,检测准确率越高。
-
检测阈值越高,人脸筛选越严格,检测出的人脸框可能越少。
3.
编译并运行全量api的demo(注:当编译模式为tiny_pubish时将不存在该demo)
```
shell
...
...
lite/demo/cxx/mask_detection/mask_detection.cc
浏览文件 @
e68b36f5
...
...
@@ -81,6 +81,29 @@ void neon_mean_scale(const float* din,
}
}
cv
::
Mat
crop_img
(
const
cv
::
Mat
&
img
,
cv
::
Rect
rec
,
int
res_width
,
int
res_height
)
{
float
xmin
=
rec
.
x
;
float
ymin
=
rec
.
y
;
float
w
=
rec
.
width
;
float
h
=
rec
.
height
;
float
center_x
=
xmin
+
w
/
2
;
float
center_y
=
ymin
+
h
/
2
;
cv
::
Point2f
center
(
center_x
,
center_y
);
float
max_wh
=
std
::
max
(
w
/
2
,
h
/
2
);
float
scale
=
res_width
/
(
2
*
max_wh
*
1.5
);
cv
::
Mat
rot_mat
=
cv
::
getRotationMatrix2D
(
center
,
0.
f
,
scale
);
rot_mat
.
at
<
double
>
(
0
,
2
)
=
rot_mat
.
at
<
double
>
(
0
,
2
)
-
(
center_x
-
res_width
/
2.0
);
rot_mat
.
at
<
double
>
(
1
,
2
)
=
rot_mat
.
at
<
double
>
(
1
,
2
)
-
(
center_y
-
res_width
/
2.0
);
cv
::
Mat
affine_img
;
cv
::
warpAffine
(
img
,
affine_img
,
rot_mat
,
cv
::
Size
(
res_width
,
res_height
));
return
affine_img
;
}
void
pre_process
(
const
cv
::
Mat
&
img
,
int
width
,
int
height
,
...
...
@@ -89,8 +112,12 @@ void pre_process(const cv::Mat& img,
float
*
data
,
bool
is_scale
=
false
)
{
cv
::
Mat
resized_img
;
cv
::
resize
(
img
,
resized_img
,
cv
::
Size
(
width
,
height
),
0.
f
,
0.
f
,
cv
::
INTER_CUBIC
);
if
(
img
.
cols
!=
width
||
img
.
rows
!=
height
)
{
cv
::
resize
(
img
,
resized_img
,
cv
::
Size
(
width
,
height
),
0.
f
,
0.
f
,
cv
::
INTER_CUBIC
);
}
else
{
resized_img
=
img
;
}
cv
::
Mat
imgf
;
float
scale_factor
=
is_scale
?
1.
f
/
256
:
1.
f
;
resized_img
.
convertTo
(
imgf
,
CV_32FC3
,
scale_factor
);
...
...
@@ -103,7 +130,7 @@ void RunModel(std::string det_model_dir,
std
::
string
img_path
)
{
// Prepare
cv
::
Mat
img
=
imread
(
img_path
,
cv
::
IMREAD_COLOR
);
float
shrink
=
0.
2
;
float
shrink
=
0.
4
;
int
width
=
img
.
cols
;
int
height
=
img
.
rows
;
int
s_width
=
static_cast
<
int
>
(
width
*
shrink
);
...
...
@@ -138,7 +165,7 @@ void RunModel(std::string det_model_dir,
int64_t
out_len
=
ShapeProduction
(
shape_out
);
// Filter Out Detection Box
float
detect_threshold
=
0.
3
;
float
detect_threshold
=
0.
7
;
std
::
vector
<
Object
>
detect_result
;
for
(
int
i
=
0
;
i
<
out_len
/
6
;
++
i
)
{
if
(
outptr
[
1
]
>=
detect_threshold
)
{
...
...
@@ -172,10 +199,13 @@ void RunModel(std::string det_model_dir,
int
detect_num
=
detect_result
.
size
();
std
::
vector
<
float
>
classify_mean
=
{
0.5
f
,
0.5
f
,
0.5
f
};
std
::
vector
<
float
>
classify_scale
=
{
1.
f
,
1.
f
,
1.
f
};
float
classify_threshold
=
0.5
;
for
(
int
i
=
0
;
i
<
detect_num
;
++
i
)
{
cv
::
Rect
rec_clip
=
detect_result
[
i
].
rec
;
cv
::
Mat
roi
=
img
(
rec_clip
);
cv
::
Mat
roi
=
crop_img
(
img
,
rec_clip
,
classify_w
,
classify_h
);
// uncomment two lines below, save roi img to disk
// std::string roi_name = "roi_" + std::to_string(i) + ".jpg";
// imwrite(roi_name, roi);
// Do PreProcess
pre_process
(
roi
,
...
...
@@ -193,35 +223,58 @@ void RunModel(std::string det_model_dir,
std
::
unique_ptr
<
const
Tensor
>
output_tensor1
(
std
::
move
(
predictor
->
GetOutput
(
1
)));
auto
*
outptr
=
output_tensor1
->
data
<
float
>
();
float
prob
=
outptr
[
1
];
// Draw Detection and Classification Results
cv
::
rectangle
(
img
,
rec_clip
,
cv
::
Scalar
(
0
,
0
,
255
),
2
,
cv
::
LINE_AA
);
std
::
string
text
=
outptr
[
1
]
>
classify_threshold
?
"wear mask"
:
"no mask"
;
int
font_face
=
cv
::
FONT_HERSHEY_COMPLEX_SMALL
;
double
font_scale
=
1.
f
;
int
thickness
=
1
;
bool
flag_mask
=
prob
>
0.5
f
;
cv
::
Scalar
roi_color
;
std
::
string
text
;
if
(
flag_mask
)
{
text
=
"MASK: "
;
roi_color
=
cv
::
Scalar
(
0
,
255
,
0
);
}
else
{
text
=
"NO MASK: "
;
roi_color
=
cv
::
Scalar
(
0
,
0
,
255
);
prob
=
1
-
prob
;
}
std
::
string
prob_str
=
std
::
to_string
(
prob
*
100
);
int
point_idx
=
prob_str
.
find_last_of
(
"."
);
text
+=
prob_str
.
substr
(
0
,
point_idx
+
3
)
+
"%"
;
int
font_face
=
cv
::
FONT_HERSHEY_SIMPLEX
;
double
font_scale
=
0.25
;
float
thickness
=
1
;
cv
::
Size
text_size
=
cv
::
getTextSize
(
text
,
font_face
,
font_scale
,
thickness
,
nullptr
);
float
new_font_scale
=
rec_clip
.
width
*
0.7
*
font_scale
/
text_size
.
width
;
text_size
=
cv
::
getTextSize
(
text
,
font_face
,
new_font_scale
,
thickness
,
nullptr
);
int
top_space
=
std
::
max
(
0.35
*
text_size
.
height
,
2.0
);
int
bottom_space
=
top_space
+
2
;
int
right_space
=
0.05
*
text_size
.
width
;
int
back_width
=
text_size
.
width
+
right_space
;
int
back_height
=
text_size
.
height
+
top_space
+
bottom_space
;
// Configure text background
cv
::
Rect
text_back
=
cv
::
Rect
(
rec_clip
.
x
,
rec_clip
.
y
-
back_height
,
back_width
,
back_height
);
// Draw roi object, text, and background
cv
::
rectangle
(
img
,
rec_clip
,
roi_color
,
1
);
cv
::
rectangle
(
img
,
text_back
,
cv
::
Scalar
(
225
,
225
,
225
),
-
1
);
cv
::
Point
origin
;
origin
.
x
=
rec_clip
.
x
+
5
;
origin
.
y
=
rec_clip
.
y
+
text_size
.
height
+
5
;
origin
.
x
=
rec_clip
.
x
;
origin
.
y
=
rec_clip
.
y
-
bottom_space
;
cv
::
putText
(
img
,
text
,
origin
,
font_face
,
new_font_scale
,
cv
::
Scalar
(
0
,
255
,
255
),
thickness
,
cv
::
LINE_AA
);
font_scale
,
cv
::
Scalar
(
0
,
0
,
0
),
thickness
);
std
::
cout
<<
"detect face, location: x="
<<
rec_clip
.
x
<<
", y="
<<
rec_clip
.
y
<<
", width="
<<
rec_clip
.
width
<<
", height="
<<
rec_clip
.
height
<<
", wear mask: "
<<
(
outptr
[
1
]
>
classify_threshold
)
<<
std
::
endl
;
<<
", height="
<<
rec_clip
.
height
<<
", wear mask: "
<<
flag_mask
<<
", prob: "
<<
prob
<<
std
::
endl
;
}
// Write Result to Image File
...
...
@@ -230,6 +283,8 @@ void RunModel(std::string det_model_dir,
std
::
string
img_name
=
img_path
.
substr
(
start
+
1
,
end
-
start
-
1
);
std
::
string
result_name
=
img_name
+
"_mask_detection_result.jpg"
;
cv
::
imwrite
(
result_name
,
img
);
std
::
cout
<<
"write result to file: "
<<
result_name
<<
", success."
<<
std
::
endl
;
}
int
main
(
int
argc
,
char
**
argv
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录