提交 e662b4d8 编写于 作者: qnqinan's avatar qnqinan

Merge remote-tracking branch 'origin/develop' into develop

......@@ -257,12 +257,10 @@ class Tensor {
struct FPGAArgs {
float scale;
inline float *scale_pointer() { return &scale; }
inline float *scale_pointer() const { return &scale; }
};
struct FPGAArgs &fpga_args() {
return fpgaArgs_;
}
const struct FPGAArgs &fpga_args() const { return fpgaArgs_; }
#endif
private:
......
......@@ -32,10 +32,14 @@ int main() {
std::vector<int64_t> dims{1, 3, 300, 300};
GetInput<float>(g_hand, &input, dims);
auto time3 = time();
// 预热一次
auto output = paddle_mobile.Predict(input, dims);
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto output = paddle_mobile.Predict(input, dims);
}
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) << "ms"
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
}
return 0;
......
......@@ -26,19 +26,22 @@ int main() {
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
GetInput<float>(g_test_image_1x3x224x224_banana, &input, dims);
// 预热一次
auto vec_result = paddle_mobile.Predict(input, dims);
std::vector<float>::iterator biggest =
std::max_element(std::begin(vec_result), std::end(vec_result));
std::cout << " Max element is " << *biggest << " at position "
<< std::distance(std::begin(vec_result), biggest) << std::endl;
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto time3 = time();
auto vec_result = paddle_mobile.Predict(input, dims);
auto time4 = time();
std::vector<float>::iterator biggest =
std::max_element(std::begin(vec_result), std::end(vec_result));
std::cout << " Max element is " << *biggest << " at position "
<< std::distance(std::begin(vec_result), biggest) << std::endl;
std::cout << "predict cost :" << time_diff(time3, time4) << "ms"
<< std::endl;
}
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
}
return 0;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册