Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e3f4f29b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3f4f29b
编写于
6月 28, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
6月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #476 from smilejames/develop
modify files and code structure about central-arm-func
上级
0342c83c
7240d08c
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
126 addition
and
105 deletion
+126
-105
src/operators/kernel/arm/batchnorm_kernel.cpp
src/operators/kernel/arm/batchnorm_kernel.cpp
+1
-1
src/operators/kernel/arm/conv_add_relu_kernel.cpp
src/operators/kernel/arm/conv_add_relu_kernel.cpp
+1
-1
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+1
-1
src/operators/kernel/arm/depthwise_conv_kernel.cpp
src/operators/kernel/arm/depthwise_conv_kernel.cpp
+2
-86
src/operators/kernel/central-arm-func/batchnorm_arm_func.h
src/operators/kernel/central-arm-func/batchnorm_arm_func.h
+0
-0
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+1
-0
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+4
-1
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+116
-0
src/operators/kernel/conv_kernel.h
src/operators/kernel/conv_kernel.h
+0
-15
未找到文件。
src/operators/kernel/arm/batchnorm_kernel.cpp
浏览文件 @
e3f4f29b
...
...
@@ -17,7 +17,7 @@ limitations under the License. */
#pragma once
#include "operators/kernel/batchnorm_kernel.h"
#include "operators/kernel/central-arm-func/batchnorm_func.h"
#include "operators/kernel/central-arm-func/batchnorm_
arm_
func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
src/operators/kernel/arm/conv_add_relu_kernel.cpp
浏览文件 @
e3f4f29b
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADD_RELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/kernel/central-arm-func/conv_add_relu_func.h"
#include "operators/kernel/central-arm-func/conv_add_relu_
arm_
func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
e3f4f29b
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/central-arm-func/conv_func.h"
#include "operators/kernel/central-arm-func/conv_
arm_
func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
src/operators/kernel/arm/depthwise_conv_kernel.cpp
浏览文件 @
e3f4f29b
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#ifdef DEPTHWISECONV_OP
#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/c
onv_kernel
.h"
#include "operators/kernel/c
entral-arm-func/depthwise_conv_arm_func
.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -27,91 +27,7 @@ bool DepthwiseConvKernel<CPU, float>::Init(const ConvParam ¶) const {
template
<
>
void
DepthwiseConvKernel
<
CPU
,
float
>::
Compute
(
const
ConvParam
&
param
)
const
{
LOG
(
kLOG_DEBUG
)
<<
param
;
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
// DLOG << " compute end get Attrs " << strides[0];
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
DepthwiseConvCompute
<
float
>
(
param
);
}
template
class
DepthwiseConvKernel
<
CPU
,
float
>;
...
...
src/operators/kernel/central-arm-func/batchnorm_func.h
→
src/operators/kernel/central-arm-func/batchnorm_
arm_
func.h
浏览文件 @
e3f4f29b
文件已移动
src/operators/kernel/central-arm-func/conv_add_relu_func.h
→
src/operators/kernel/central-arm-func/conv_add_relu_
arm_
func.h
浏览文件 @
e3f4f29b
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADD_RELU_OP
#pragma once
#include <vector>
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
src/operators/kernel/central-arm-func/conv_func.h
→
src/operators/kernel/central-arm-func/conv_
arm_
func.h
浏览文件 @
e3f4f29b
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
#ifdef CONV_OP
#pragma once
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
@@ -48,7 +50,8 @@ void ConvCompute(const ConvParam ¶m) {
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
0 → 100644
浏览文件 @
e3f4f29b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEPTHWISECONV_OP
#pragma once
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
DepthwiseConvCompute
(
const
ConvParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
// DLOG << " compute end get Attrs " << strides[0];
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/conv_kernel.h
浏览文件 @
e3f4f29b
...
...
@@ -35,21 +35,6 @@ class ConvKernel : public OpKernelBase<DeviceType, ConvParam> {
bool
Init
(
const
ConvParam
&
para
)
const
;
};
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>
&
filter_dim
,
const
std
::
vector
<
int
>
&
strides
,
const
std
::
vector
<
int
>
&
paddings
,
const
std
::
vector
<
int
>
&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录