Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e32e90c3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e32e90c3
编写于
9月 05, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
mps and uncomplete interface
上级
b378e1c2
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
387 addition
and
0 deletion
+387
-0
metal/paddle-mobile-demo/paddle-mobile-demo/Net/PaddleMobile.swift
...dle-mobile-demo/paddle-mobile-demo/Net/PaddleMobile.swift
+9
-0
metal/paddle-mobile/paddle-mobile/Operators/CNNMPSConvOp.swift
.../paddle-mobile/paddle-mobile/Operators/CNNMPSConvOp.swift
+75
-0
metal/paddle-mobile/paddle-mobile/Operators/Kernels/BatchNormReluKernel.swift
...paddle-mobile/Operators/Kernels/BatchNormReluKernel.swift
+91
-0
metal/paddle-mobile/paddle-mobile/Operators/Kernels/CNNConvKernel.swift
...obile/paddle-mobile/Operators/Kernels/CNNConvKernel.swift
+176
-0
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/BatchNormRelu.metal
...paddle-mobile/Operators/Kernels/metal/BatchNormRelu.metal
+36
-0
未找到文件。
metal/paddle-mobile-demo/paddle-mobile-demo/Net/PaddleMobile.swift
0 → 100644
浏览文件 @
e32e90c3
//
// PaddleMobile.swift
// paddle-mobile-demo
//
// Created by liuRuiLong on 2018/9/5.
// Copyright © 2018年 orange. All rights reserved.
//
import
Foundation
metal/paddle-mobile/paddle-mobile/Operators/CNNMPSConvOp.swift
0 → 100644
浏览文件 @
e32e90c3
//
// CNNConvAddBatchNormReluOp.swift
// paddle-mobile
import
Foundation
class
CNNMPSConvTestParam
:
TestParam
{
var
outputTexture
:
MTLTexture
?
var
metalParam
:
MetalConvParam
let
filterPointer
:
UnsafeMutableRawPointer
let
biasePointer
:
UnsafeMutablePointer
<
Float
>
let
filterSize
:
(
width
:
Int
,
height
:
Int
,
channel
:
Int
)
init
(
inMetalParam
:
MetalConvParam
,
inFilter
:
[
Float
],
inBiase
:
[
Float
],
inFilterSize
:
(
width
:
Int
,
height
:
Int
,
channel
:
Int
))
{
metalParam
=
inMetalParam
filterPointer
=
UnsafeMutableRawPointer
.
init
(
mutating
:
inFilter
)
biasePointer
=
UnsafeMutablePointer
.
init
(
mutating
:
inBiase
)
filterSize
=
inFilterSize
}
}
@available
(
iOS
10.0
,
*
)
class
CNNMPSConvOp
<
P
:
PrecisionType
>
:
Operator
<
CNNConvKernel
<
P
>
,
CNNConvParam
<
P
>>
,
Runable
,
Creator
,
InferShaperable
,
Fusion
{
typealias
OpType
=
CNNMPSConvOp
<
P
>
required
init
(
device
:
MTLDevice
,
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
fatalError
()
}
func
runImpl
(
device
:
MTLDevice
,
buffer
:
MTLCommandBuffer
)
throws
{
do
{
try
kernel
.
compute
(
commandBuffer
:
buffer
,
param
:
para
)
}
catch
let
error
{
throw
error
}
}
func
delogOutput
()
{
}
static
func
fusionNode
()
->
Node
{
let
beginNode
=
Node
.
init
(
inType
:
gConvType
)
_
=
beginNode
-->
Node
.
init
(
inType
:
gElementwiseAdd
);
return
beginNode
}
static
func
change
()
->
[
String
:
[(
from
:
String
,
to
:
String
)]]
{
return
[:]
}
static
func
fusionType
()
->
String
{
return
gMPSCNNConvType
}
func
inferShape
()
{
let
inDims
=
para
.
input
.
dim
let
filterDim
=
para
.
filter
.
dim
let
strides
=
para
.
stride
let
paddings
=
para
.
paddings
let
dilations
=
para
.
dilations
var
outDim
=
[
inDims
[
0
]]
for
i
in
0
..<
strides
.
count
{
let
dilation
:
Int
=
Int
(
dilations
[
i
])
let
filterSize
:
Int
=
filterDim
[
i
+
1
]
let
inputSize
:
Int
=
inDims
[
i
+
1
]
let
padding
:
Int
=
Int
(
paddings
[
i
])
let
stride
:
Int
=
Int
(
strides
[
i
])
let
dKernel
=
dilation
*
(
filterSize
-
1
)
+
1
let
outputSize
=
(
inputSize
+
2
*
padding
-
dKernel
)
/
stride
+
1
outDim
.
append
(
outputSize
)
}
outDim
.
append
(
filterDim
[
0
])
para
.
output
.
dim
=
Dim
.
init
(
inDim
:
outDim
)
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/BatchNormReluKernel.swift
0 → 100644
浏览文件 @
e32e90c3
//
// BatchNormRelu.swift
// paddle-mobile
//
// Created by zhangxinjun on 2018/8/23.
// Copyright © 2018年 orange. All rights reserved.
//
import
Foundation
class
BatchNormReluParam
<
P
:
PrecisionType
>
:
BatchNormParam
<
P
>
{
}
class
BatchNormReluKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
{
typealias
ParamType
=
BatchNormReluParam
<
P
>
var
newScale
:
MTLBuffer
var
newBias
:
MTLBuffer
required
init
(
device
:
MTLDevice
,
testParam
:
BatchNormReluTestParam
)
{
newScale
=
testParam
.
newScaleBuffer
newBias
=
testParam
.
newBiaseBuffer
super
.
init
(
device
:
device
,
inFunctionName
:
"batch_norm_relu_3x3"
)
}
required
init
(
device
:
MTLDevice
,
param
:
BatchNormReluParam
<
P
>
)
{
guard
let
newScale
=
device
.
makeBuffer
(
length
:
param
.
inputScale
.
buffer
.
length
)
else
{
fatalError
()
}
guard
let
newBias
=
device
.
makeBuffer
(
length
:
param
.
inputBias
.
buffer
.
length
)
else
{
fatalError
()
}
self
.
newScale
=
newScale
self
.
newBias
=
newBias
super
.
init
(
device
:
device
,
inFunctionName
:
"batch_norm_relu_3x3"
)
let
varianceBuffer
:
MTLBuffer
=
param
.
inputVariance
.
buffer
var
invStd
:
[
Float32
]
=
Array
(
repeating
:
0
,
count
:
varianceBuffer
.
length
)
let
varianceContents
=
varianceBuffer
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
for
i
in
0
..<
(
varianceBuffer
.
length
/
MemoryLayout
<
P
>.
stride
)
{
invStd
[
i
]
=
1
/
(
Float32
(
varianceContents
[
i
])
+
param
.
epsilon
)
.
squareRoot
()
}
let
newScaleContents
=
newScale
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
let
newBiasContents
=
newBias
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
let
scale
:
MTLBuffer
=
param
.
inputScale
.
buffer
let
scaleContents
=
scale
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
let
bias
:
MTLBuffer
=
param
.
inputBias
.
buffer
let
biasContents
=
bias
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
let
meanContents
=
param
.
inputMean
.
buffer
.
contents
()
.
assumingMemoryBound
(
to
:
P
.
self
)
for
i
in
0
..<
(
newScale
.
length
/
MemoryLayout
<
P
>.
stride
)
{
newScaleContents
[
i
]
=
P
(
invStd
[
i
]
*
Float32
(
scaleContents
[
i
]))
newBiasContents
[
i
]
=
P
(
Float32
(
biasContents
[
i
])
-
Float32
(
meanContents
[
i
])
*
invStd
[
i
]
*
Float32
(
scaleContents
[
i
]))
}
}
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
BatchNormReluParam
<
P
>
)
throws
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
fatalError
()
}
encoder
.
setTexture
(
param
.
input
as?
MTLTexture
,
index
:
0
)
encoder
.
setTexture
(
param
.
output
as?
MTLTexture
,
index
:
1
)
encoder
.
setBuffer
(
newScale
,
offset
:
0
,
index
:
1
)
encoder
.
setBuffer
(
newBias
,
offset
:
0
,
index
:
1
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
param
.
output
as!
MTLTexture
)
encoder
.
endEncoding
()
}
func
testCompute
(
commandBuffer
:
MTLCommandBuffer
,
testParam
:
BatchNormReluTestParam
)
throws
{
guard
let
encoder
=
commandBuffer
.
makeComputeCommandEncoder
()
else
{
fatalError
()
}
encoder
.
setTexture
(
testParam
.
inputTexture
,
index
:
0
)
encoder
.
setTexture
(
testParam
.
outputTexture
,
index
:
1
)
encoder
.
setBuffer
(
newScale
,
offset
:
0
,
index
:
0
)
encoder
.
setBuffer
(
newBias
,
offset
:
0
,
index
:
1
)
encoder
.
dispatch
(
computePipline
:
pipline
,
outTexture
:
testParam
.
outputTexture
)
encoder
.
endEncoding
()
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/CNNConvKernel.swift
0 → 100644
浏览文件 @
e32e90c3
//
// CNNConvKernel.swift
// paddle-mobile
//
import
Foundation
import
Metal
import
Accelerate
import
MetalPerformanceShaders
@available
(
iOS
10.0
,
*
)
class
WeightsDataSource
:
NSObject
,
MPSCNNConvolutionDataSource
{
let
desc
:
MPSCNNConvolutionDescriptor
let
weight
:
UnsafeMutableRawPointer
let
bias
:
UnsafeMutablePointer
<
Float
>
init
(
inDesc
:
MPSCNNConvolutionDescriptor
,
inWeight
:
UnsafeMutableRawPointer
,
inBias
:
UnsafeMutablePointer
<
Float
>
)
{
desc
=
inDesc
weight
=
inWeight
bias
=
inBias
}
func
dataType
()
->
MPSDataType
{
return
.
float32
}
func
descriptor
()
->
MPSCNNConvolutionDescriptor
{
return
desc
}
func
weights
()
->
UnsafeMutableRawPointer
{
return
self
.
weight
}
func
biasTerms
()
->
UnsafeMutablePointer
<
Float
>
?
{
return
self
.
bias
}
func
load
()
->
Bool
{
return
true
}
func
purge
()
{
}
func
label
()
->
String
?
{
return
"Conv"
}
}
@available
(
iOS
10.0
,
*
)
class
CNNConvParam
<
P
:
PrecisionType
>
:
OpParam
{
typealias
ParamPrecisionType
=
P
required
init
(
opDesc
:
OpDesc
,
inScope
:
Scope
)
throws
{
do
{
filter
=
try
CNNConvParam
.
inputFilter
(
paraInputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
input
=
try
CNNConvParam
.
input
(
inputs
:
opDesc
.
inputs
,
from
:
inScope
)
output
=
try
CNNConvParam
.
outputOut
(
outputs
:
opDesc
.
outputs
,
from
:
inScope
)
stride
=
try
CNNConvParam
.
getAttr
(
key
:
"strides"
,
attrs
:
opDesc
.
attrs
)
paddings
=
try
CNNConvParam
.
getAttr
(
key
:
"paddings"
,
attrs
:
opDesc
.
attrs
)
// 暂时不用关心
dilations
=
try
CNNConvParam
.
getAttr
(
key
:
"dilations"
,
attrs
:
opDesc
.
attrs
)
// 暂时不用关心
groups
=
try
CNNConvParam
.
getAttr
(
key
:
"groups"
,
attrs
:
opDesc
.
attrs
)
variance
=
try
CNNConvParam
.
inputVariance
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
// bias
y
=
try
CNNConvParam
.
inputY
(
inputs
:
opDesc
.
paraInputs
,
from
:
inScope
)
}
catch
let
error
{
throw
error
}
}
var
input
:
Texture
<
P
>
let
variance
:
Tensor
<
ParamPrecisionType
>
let
y
:
Tensor
<
ParamPrecisionType
>
let
filter
:
Tensor
<
ParamPrecisionType
>
var
output
:
Texture
<
P
>
let
stride
:
[
Int32
]
let
paddings
:
[
Int32
]
let
dilations
:
[
Int32
]
let
groups
:
Int
}
@available
(
iOS
10.0
,
*
)
class
CNNConvKernel
<
P
:
PrecisionType
>
:
Kernel
,
Computable
{
typealias
ParamType
=
CNNConvParam
<
P
>
var
mpsImageCreator
:
MpsImageCreator
<
P
>
?
var
activation
:
MPSCNNNeuron
?
var
conv
:
MPSCNNConvolution
?
var
weightDataSource
:
WeightsDataSource
?
var
param
:
CNNConvParam
<
P
>
?
var
device
:
MTLDevice
?
required
init
(
device
:
MTLDevice
,
testParam
:
CNNMPSConvTestParam
)
{
self
.
device
=
device
let
desc
=
MPSCNNConvolutionDescriptor
(
kernelWidth
:
testParam
.
filterSize
.
width
,
kernelHeight
:
testParam
.
filterSize
.
height
,
inputFeatureChannels
:
testParam
.
filterSize
.
channel
,
outputFeatureChannels
:
testParam
.
filterSize
.
channel
,
neuronFilter
:
activation
)
desc
.
strideInPixelsX
=
Int
(
testParam
.
metalParam
.
offsetX
)
desc
.
strideInPixelsY
=
Int
(
testParam
.
metalParam
.
offsetY
)
weightDataSource
=
WeightsDataSource
(
inDesc
:
desc
,
inWeight
:
testParam
.
filterPointer
,
inBias
:
testParam
.
biasePointer
)
if
#available(iOS 11.0, *)
{
conv
=
MPSCNNConvolution
(
device
:
self
.
device
!
,
weights
:
weightDataSource
!
)
}
else
{
// Fallback on earlier versions
}
super
.
init
(
device
:
device
,
inFunctionName
:
""
)
}
required
init
(
device
:
MTLDevice
,
param
:
CNNConvParam
<
P
>
)
{
self
.
device
=
device
let
inChannels
:
Int
let
outChannels
:
Int
if
param
.
y
.
dim
.
cout
()
==
4
{
inChannels
=
(
param
.
y
.
dim
[
3
])
outChannels
=
inChannels
}
else
{
inChannels
=
0
outChannels
=
inChannels
}
let
desc
=
MPSCNNConvolutionDescriptor
(
kernelWidth
:
param
.
filter
.
width
,
kernelHeight
:
param
.
filter
.
height
,
inputFeatureChannels
:
inChannels
,
outputFeatureChannels
:
outChannels
,
neuronFilter
:
activation
)
desc
.
strideInPixelsX
=
Int
(
param
.
stride
[
0
])
desc
.
strideInPixelsY
=
Int
(
param
.
stride
[
1
])
weightDataSource
=
WeightsDataSource
(
inDesc
:
desc
,
inWeight
:
param
.
filter
.
data
.
pointer
as!
UnsafeMutablePointer
<
Float
>
,
inBias
:
param
.
y
.
data
.
pointer
as!
UnsafeMutablePointer
<
Float
>
)
if
#available(iOS 11.0, *)
{
conv
=
MPSCNNConvolution
(
device
:
self
.
device
!
,
weights
:
weightDataSource
!
)
}
else
{
// Fallback on earlier versions
}
super
.
init
(
device
:
device
,
inFunctionName
:
""
)
}
func
compute
(
commandBuffer
:
MTLCommandBuffer
,
param
:
CNNConvParam
<
P
>
)
throws
{
let
inputImage
:
MPSImage
=
(
mpsImageCreator
?
.
createMPSImage
(
device
:
device
!
))
!
var
outputImage
=
(
mpsImageCreator
?
.
createMPSImage
(
device
:
device
!
))
!
// 运算conv和add两个步骤,add用了bias偏差做为参数,被Metal API进行调用
conv
?
.
encode
(
commandBuffer
:
commandBuffer
,
sourceImage
:
inputImage
,
destinationImage
:
outputImage
)
param
.
input
=
outputImage
.
texture
as!
Texture
<
P
>
}
func
testCompute
(
commandBuffer
:
MTLCommandBuffer
,
testParam
:
CNNMPSConvTestParam
)
throws
{
let
inputImage
:
MPSImage
=
(
mpsImageCreator
?
.
createMPSImage
(
device
:
device
!
))
!
var
outputImage
=
(
mpsImageCreator
?
.
createMPSImage
(
device
:
device
!
))
!
// 运算conv和add两个步骤,add用了bias偏差做为参数,被Metal API进行调用
conv
?
.
encode
(
commandBuffer
:
commandBuffer
,
sourceImage
:
inputImage
,
destinationImage
:
outputImage
)
testParam
.
outputTexture
=
outputImage
.
texture
}
}
metal/paddle-mobile/paddle-mobile/Operators/Kernels/metal/BatchNormRelu.metal
0 → 100644
浏览文件 @
e32e90c3
//
// BatchNormRelu.metal
// paddle-mobile
//
#include <metal_stdlib>
using namespace metal;
struct MetalConvParam {
short offsetX;
short offsetY;
short offsetZ;
ushort strideX;
ushort strideY;
};
kernel void batch_norm_relu_3x3(texture2d_array<float, access::sample> inTexture [[texture(0)]],
texture2d_array<float, access::write> outTexture [[texture(1)]],
const device float4 *new_scale [[buffer(0)]],
const device float4 *new_biase [[buffer(1)]],
uint3 gid [[thread_position_in_grid]]) {
if (gid.x >= outTexture.get_width() ||
gid.y >= outTexture.get_height() ||
gid.z >= outTexture.get_array_size()) {
return;
}
float4 input;
float4 output;
constexpr sampler sample(coord::pixel, filter::nearest, address::clamp_to_zero);
input = inTexture.sample(sample, gid.x, gid.y, gid.z);
output = fmax(input * new_scale[gid.z] + new_biase[gid.z], 0.0);
outTexture.write(output, gid.xy, gid.z);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录