提交 e310c6c8 编写于 作者: W WangLiu 提交者: GitHub

Merge pull request #425 from cocodark/develop

optimize pool kernel
......@@ -42,8 +42,6 @@ void expand_bias(Tensor &bias, int axis, const DDim &dDim) {
template <>
void ConvAddKernel<CPU, float>::Compute(
const FushionConvAddParam &param) const {
DLOG << param;
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor bias = *param.Bias();
......
......@@ -21,8 +21,6 @@ namespace operators {
template <>
void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
LOG(kLOG_DEBUG) << param;
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor *output = param.Output();
......@@ -32,8 +30,6 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
// DLOG << " compute end get Attrs " << strides[0];
const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
......@@ -66,7 +62,6 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
DLOG << " filter.dims() = " << filter.dims();
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
......
......@@ -56,22 +56,23 @@ void PoolKernel<CPU, float>::Compute(const PoolParam &param) const {
paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
}
}
} else if (ksize[0] == 3 && ksize[0] == ksize[1]) {
if (pooling_type == "max") {
math::Pool3x3Max(strides, paddings, in_x, out);
} else if (pooling_type == "avg") {
math::Pool3x3Avg(strides, paddings, in_x, out);
}
PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
// if (param.isGlobalPooling() || ksize[0] != ksize[1] ||
// strides[0] != strides[1] || strides[1] != 2 ||
// paddings[0] != paddings[1] || paddings[1] > 1) {
// PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
//
// } else if (ksize[0] == 2) {
//
// } else if (ksize[0] == 3) {
//
// } else {
// PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
// }
} else if (ksize[0] == 2 && ksize[0] == ksize[1]) {
if (pooling_type == "max") {
math::Pool2x2Max(strides, paddings, in_x, out);
} else if (pooling_type == "avg") {
math::Pool2x2Avg(strides, paddings, in_x, out);
}
} else {
PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
}
}
} // namespace operators
} // namespace paddle_mobile
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#include "pool_2x2.h"
namespace paddle_mobile {
namespace operators {
namespace math {
void Pool2x2Max(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output) {
#if __ARM_NEON
const int batch_size = input->dims()[0];
const int input_height = input->dims()[2];
const int input_width = input->dims()[3];
const int output_channels = output->dims()[1];
int output_height = output->dims()[2];
const int output_width = output->dims()[3];
const int ksize_height = 2;
const int ksize_width = 2;
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const int input_channel_stride = input_height * input_width;
const int output_channel_stride = output_height * output_width;
const float *input_data = input->data<float>();
float *output_data = output->mutable_data<float>();
int out_w_num = output_width >> 2;
const int in_h_num = output_height >> 1;
const int input_batch_stride = output_channels * input_channel_stride;
const int output_batch_stride = output_channels * output_channel_stride;
int remain = output_width - out_w_num << 2;
for (int i = 0; i < batch_size; ++i) {
for (int c = 0; c < output_channels; ++c) {
const float *input_data_chanel_row_next = input_data + input_width;
for (; output_height > 0; output_height--) {
if (out_w_num > 0) {
asm volatile(
"max_loop: \n\t"
"vld1.f32 {q0,q1}, [%[in_ptr1]]! \n\t"
"vld1.f32 {q2,q3}, [%[in_ptr2]]! \n\t"
"vmax.f32 q0, q0, q2 \n\t"
"vmax.f32 q1, q1, q3 \n\t"
"vpmax.f32 d4, d0, d1 \n\t"
"vpmax.f32 d5, d2, d3 \n\t"
"subs %[out_w_num], #1 \n\t"
"vst1.32 {q2}, [%[out_ptr]]! \n\t"
"bne max_loop \n\t"
: [in_ptr1] "+r"(input_data),
[in_ptr2] "+r"(input_data_chanel_row_next),
[out_ptr] "+r"(output_data), [out_w_num] "+r"(out_w_num)
:
: "memory", "q0", "q1", "q2", "q3");
}
for (; remain > 0; remain--) {
float max_row1 = std::max(input_data[0], input_data[1]);
float max_row2 = std::max(input_data_chanel_row_next[0],
input_data_chanel_row_next[1]);
*output_data = std::max(max_row1, max_row2);
input_data += 2;
input_data_chanel_row_next += 2;
output_data++;
}
}
input_data += input_channel_stride;
output_data += output_channel_stride;
}
input_data += input_batch_stride;
output_data += output_batch_stride;
}
#endif
}
void Pool2x2Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output) {
#if __ARM_NEON
const int batch_size = input->dims()[0];
const int input_height = input->dims()[2];
const int input_width = input->dims()[3];
const int output_channels = output->dims()[1];
int output_height = output->dims()[2];
const int output_width = output->dims()[3];
const int ksize_height = 2;
const int ksize_width = 2;
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const int input_channel_stride = input_height * input_width;
const int output_channel_stride = output_height * output_width;
const float *input_data = input->data<float>();
float *output_data = output->mutable_data<float>();
int out_w_num = output_width >> 2;
const int input_batch_stride = output_channels * input_channel_stride;
const int output_batch_stride = output_channels * output_channel_stride;
float vqua[] = {0.25f, 0.25f, 0.25f, 0.25f};
int remain = output_width - out_w_num << 2;
for (int i = 0; i < batch_size; ++i) {
for (int c = 0; c < output_channels; ++c) {
const float *input_data_chanel_row_next = input_data + input_width;
for (; output_height > 0; output_height--) {
if (out_w_num > 0) {
asm volatile(
"avg_loop: \n\t"
"vld1.32 {q0,q1}, [%[in_ptr1]]! \n\t"
"vld1.32 {q2,q3}, [%[in_ptr2]]! \n\t"
"vadd.f32 q0, q0, q2 \n\t"
"vadd.f32 q1, q1, q3 \n\t"
"vpadd.f32 d4, d0, d1 \n\t"
"vpadd.f32 d5, d2, d3 \n\t"
"vld1.32 {q4}, [%[vqua]]! \n\t"
"vmul.f32 q2, q2, q4 \n\t"
"subs %[out_w_num], #1 \n\t"
"vst1.32 {q2}, [%[out_ptr]]! \n\t"
"bne avg_loop \n\t"
: [in_ptr1] "+r"(input_data),
[in_ptr2] "+r"(input_data_chanel_row_next),
[out_ptr] "+r"(output_data), [out_w_num] "+r"(out_w_num)
: [vqua] "r"(vqua)
: "memory", "q0", "q1", "q2", "q3", "q4");
}
for (; remain > 0; remain--) {
float max_row1 = std::max(input_data[0], input_data[1]);
float max_row2 = std::max(input_data_chanel_row_next[0],
input_data_chanel_row_next[1]);
*output_data = std::max(max_row1, max_row2);
input_data += 2;
input_data_chanel_row_next += 2;
output_data++;
}
}
input_data += input_channel_stride;
output_data += output_channel_stride;
}
input_data += input_batch_stride;
output_data += output_batch_stride;
}
#endif
}
//}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -16,16 +16,22 @@ limitations under the License. */
#pragma once
#include "framework/tensor.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif // __ARM_NEON
static void Pool2x2Max() {
// todo impl with neon
}
static void Pool2x2Avg() {
// todo impl with neon
}
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::vector;
void Pool2x2Max(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output);
void Pool2x2Avg(vector<int> strides, vector<int> paddings, const Tensor *in_x,
Tensor *out);
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#define __ARM_NEON true
#include "pool_3x3.h"
#include "framework/tensor.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif // __ARM_NEON
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::max;
using std::min;
using std::vector;
void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output) {
#if __ARM_NEON
const int batch_size = input->dims()[0];
const int input_height = input->dims()[2];
const int input_width = input->dims()[3];
const int output_channels = output->dims()[1];
const int output_height = output->dims()[2];
const int output_width = output->dims()[3];
const int _kernel_size = 3;
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const float negative_max = -INT_MAX;
const int input_channel_stride = input_height * input_width;
const int output_channel_stride = output_height * output_width;
const float *input_data = input->data<float>();
float *output_data = output->mutable_data<float>();
const int input_batch_stride = output_channels * input_channel_stride;
const int output_batch_stride = output_channels * output_channel_stride;
const float *pos1, *pos2, *pos3, *output_ptr;
int hstart, wstart, hend, wend;
for (int i = 0; i < batch_size; ++i) {
for (int c = 0; c < output_channels; ++c) {
for (int ph = 0; ph < output_height; ph++) {
for (int pw = 0; pw < output_width; pw++) {
hstart = ph * stride_height - padding_height;
wstart = pw * stride_width - padding_width;
hend = min(hstart + _kernel_size, input_height + padding_height);
wend = min(wstart + _kernel_size, input_width + padding_width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
hend = min(hend, input_height);
wend = min(wend, input_width);
pos1 = input_data + hstart * input_width + wstart;
pos2 = input_data + (hstart + 1) * input_width + wstart;
pos3 = input_data + (hstart + 2) * input_width + wstart;
output_ptr = output_data + ph * output_width + pw;
if (hend - hstart != 3 || wend - wstart != 3) {
float max_value = -INT_MAX;
for (int h = hstart; h < hend; h++) {
for (int w = wstart; w < wend; w++) {
float value = input_data[h * input_width + w];
if (value > max_value) {
max_value = value;
}
}
}
output_data[ph * output_width + pw] = max_value;
} else {
#if defined(ARMV7)
asm volatile(
"vld1.32 {q1}, [%[pos1]] \n\t"
"vld1.32 {q2}, [%[pos2]] \n\t"
"vld1.32 {q3}, [%[pos3]] \n\t"
"vmax.f32 q1, q1, q2 \n\t"
"vmax.f32 q2, q1, q3 \n\t"
"vmov.f32 d5[1], %[negative_max] \n\t"
"vpmax.f32 d6, d4, d5 \n\t"
"vpmax.f32 d7, d6, d6 \n\t"
"vst1.32 {d7[0]},[%[output_ptr]] \n\t"
:
: [input_data] "r"(input_data), [pos1] "r"(pos1),
[pos2] "r"(pos2), [pos3] "r"(pos3),
[output_ptr] "r"(output_ptr), [negative_max] "r"(negative_max)
: "memory", "q1", "q2", "q3", "q4");
#else
const float32x4_t data1 = vld1q_f32(pos1);
const float32x4_t data2 = vld1q_f32(pos2);
const float32x4_t data3 = vld1q_f32(pos3);
const float32x4_t max_data =
vmaxq_f32(vmaxq_f32(data1, data3), data2);
float32x2_t res =
vpmax_f32(vget_high_f32(vsetq_lane_f32(-INT_MAX, max_data, 3)),
vget_low_f32(max_data));
res = vpmax_f32(res, res);
output_data[ph * output_width + pw] = vget_lane_f32(res, 0);
#endif
}
}
}
input_data += input_channel_stride;
output_data += output_channel_stride;
}
input_data += input_batch_stride;
output_data += output_batch_stride;
}
#endif
}
void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output) {
#if __ARM_NEON
const int batch_size = input->dims()[0];
const int input_height = input->dims()[2];
const int input_width = input->dims()[3];
const int output_channels = output->dims()[1];
const int output_height = output->dims()[2];
const int output_width = output->dims()[3];
const int _kernel_size = 3;
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const int input_channel_stride = input_height * input_width;
const int output_channel_stride = output_height * output_width;
const float *input_data = input->data<float>();
float *output_data = output->mutable_data<float>();
const float zero = 0;
const float nine = 1.0 / 9.0;
const float nine_ptr[] = {nine, nine};
const int input_batch_stride = output_channels * input_channel_stride;
const int output_batch_stride = output_channels * output_channel_stride;
for (int i = 0; i < batch_size; ++i) {
for (int c = 0; c < output_channels; ++c) {
for (int ph = 0; ph < output_height; ph++) {
for (int pw = 0; pw < output_width; pw++) {
int hstart = ph * stride_height - padding_height;
int wstart = pw * stride_width - padding_width;
int hend = min(hstart + _kernel_size, input_height + padding_height);
int wend = min(wstart + _kernel_size, input_width + padding_width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
hend = min(hend, input_height);
wend = min(wend, input_width);
const float *pos1 = input_data + hstart * input_width + wstart;
const float *pos2 = input_data + (hstart + 1) * input_width + wstart;
const float *pos3 = input_data + (hstart + 2) * input_width + wstart;
const float *output_ptr = output_data + ph * output_width + pw;
if (hend - hstart != 3 || wend - wstart != 3) {
float sum = 0;
for (int h = hstart; h < hend; h++) {
for (int w = wstart; w < wend; w++) {
sum += input_data[h * input_width + w];
}
}
output_data[ph * output_width + pw] = sum / 9.0;
} else {
#if defined(ARMV7)
asm volatile(
"vld1.32 {q1}, [%[pos1]] \n\t"
"vld1.32 {q2}, [%[pos2]] \n\t"
"vld1.32 {q3}, [%[pos3]] \n\t"
"vadd.f32 q1, q1, q2 \n\t"
"vadd.f32 q2, q1, q3 \n\t"
"vmov.f32 d5[1], %[zero] \n\t"
"vpadd.f32 d6, d4, d5 \n\t"
"vpadd.f32 d6, d6, d6 \n\t"
"vld1.f32 d7, [%[nine_ptr]]! \n\t"
"vmul.f32 d6,d7 \n\t"
"vst1.32 {d6[0]},[%[output_ptr]] \n\t"
:
: [input_data] "r"(input_data), [pos1] "r"(pos1),
[pos2] "r"(pos2), [pos3] "r"(pos3),
[output_ptr] "r"(output_ptr), [zero] "r"(zero),
[nine_ptr] "r"(nine_ptr)
: "memory", "r6", "q1", "q2", "q3", "q4");
#else
const float32x4_t data1 = vld1q_f32(pos1);
const float32x4_t data2 = vld1q_f32(pos2);
const float32x4_t data3 = vld1q_f32(pos3);
const float32x4_t sum_data =
vaddq_f32(vaddq_f32(data1, data3), data2);
float32x2_t res =
vpadd_f32(vget_high_f32(vsetq_lane_f32(0, sum_data, 3)),
vget_low_f32(sum_data));
res = vpadd_f32(res, res);
output_data[ph * output_width + pw] = vget_lane_f32(res, 0) / 9.0;
#endif
}
}
}
input_data += input_channel_stride;
output_data += output_channel_stride;
}
input_data += input_batch_stride;
output_data += output_batch_stride;
}
#endif
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -16,16 +16,24 @@ limitations under the License. */
#pragma once
#include "framework/tensor.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif // __ARM_NEON
static void Pool3x3Max() {
// todo impl with neon
}
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::vector;
static void Pool3x3Avg() {
// todo impl with neon
}
void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output);
void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *in_x,
Tensor *out);
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -38,9 +38,7 @@ class PoolFunctor<CPU, PoolProcess, T> {
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
if (output == nullptr) {
DLOG << "output tensor is null";
}
const int output_channels = output->dims()[1];
const int output_height = output->dims()[2];
......
......@@ -18,6 +18,8 @@ limitations under the License. */
#include "common/log.h"
#include "framework/tensor.h"
#include "pool_2x2.h"
#include "pool_3x3.h"
namespace paddle_mobile {
namespace operators {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册