Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e14fb0d6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e14fb0d6
编写于
7月 05, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
7月 05, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #517 from Eclipsess/develop
fix
#516
update dwbnrelu
上级
6269e0b4
fd717b39
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
227 addition
and
55 deletion
+227
-55
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
...operators/kernel/central-arm-func/conv_add_bn_relu_func.h
+8
-7
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+214
-44
src/operators/math/depthwise_conv_3x3.h
src/operators/math/depthwise_conv_3x3.h
+5
-4
未找到文件。
src/operators/kernel/central-arm-func/conv_add_bn_relu_func.h
浏览文件 @
e14fb0d6
...
@@ -108,7 +108,7 @@ void ConvAddBNReluBasic(const FusionConvAddBNReluParam ¶m) {
...
@@ -108,7 +108,7 @@ void ConvAddBNReluBasic(const FusionConvAddBNReluParam ¶m) {
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
));
static_cast
<
float
>
(
0
));
}
}
}
}
/// todo : use neon in special case instead of 2for(300ms)
/// todo : use neon in special case instead of 2for(300ms)
...
@@ -131,15 +131,16 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam ¶m) {
...
@@ -131,15 +131,16 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam ¶m) {
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
math
::
DepthwiseConvAddBNRelu3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
&
Bias
,
1
,
param
.
Output
(),
param
.
NewScale
()
,
param
.
NewScale
(),
param
.
NewBias
(),
1
,
1
);
param
.
NewBias
()
,
1
);
}
else
if
(
0
&&
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
math
::
DepthwiseConvAddBNRelu3x3s2p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Filter
(),
&
Bias
,
param
.
Output
(),
false
);
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
1
);
}
else
{
}
else
{
ConvAddBNReluBasic
(
param
);
ConvAddBNReluBasic
(
param
);
}
}
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
e14fb0d6
...
@@ -514,14 +514,11 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -514,14 +514,11 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
const
Tensor
*
new_bias
,
bool
if_bn
,
bool
if_relu
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
...
@@ -532,7 +529,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -532,7 +529,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
hxw
=
h
*
w
;
const
int
hxw
=
h
*
w
;
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
float32x4_t
vzero
=
vdupq_n_f32
(
0
);
float32x4_t
vzero
=
vdupq_n_f32
(
0
);
...
@@ -541,13 +537,9 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -541,13 +537,9 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
const
float
*
filter_data_tmp
=
filter_data
;
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
if
(
if_bias
)
{
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vbias
=
vdupq_n_f32
(
bias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
}
if
(
if_bn
)
{
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
}
int
l_mid
=
l
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
int
l_mid
=
l
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
float
w00
=
filter_data_tmp
[
0
];
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w01
=
filter_data_tmp
[
1
];
...
@@ -573,21 +565,14 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -573,21 +565,14 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
];
w11
*
input_data
[
l
*
l
-
1
];
if
(
if_bias
)
{
output_data
[
0
]
=
output_data
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
0
]
+=
bias_data
[
j
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
+=
bias_data
[
j
];
output_data
[
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
+=
bias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
=
output_data
[
l
*
l
-
1
]
+=
bias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
}
output_data
[
l
*
l
-
1
]
=
if
(
if_bn
)
{
output_data
[
l
*
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
0
]
=
output_data
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
=
output_data
[(
l
-
1
)
*
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
l
*
l
-
1
]
=
output_data
[
l
*
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
}
if
(
if_relu
)
{
if
(
if_relu
)
{
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
<
0
?
0
:
output_data
[
l
-
1
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
<
0
?
0
:
output_data
[
l
-
1
];
...
@@ -607,16 +592,11 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -607,16 +592,11 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
];
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
];
if
(
if_bias
)
{
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
+=
bias_data
[
j
];
output_data
[
i
*
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
+=
bias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
=
}
output_data
[
i
*
l
+
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_bn
)
{
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
=
output_data
[
i
*
l
+
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
}
if
(
if_relu
)
{
if
(
if_relu
)
{
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
<
0
?
0
:
output_data
[
i
*
l
];
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
<
0
?
0
:
output_data
[
i
*
l
];
output_data
[
i
*
l
+
l
-
1
]
=
output_data
[
i
*
l
+
l
-
1
]
=
...
@@ -652,7 +632,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -652,7 +632,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
out0
=
vmaxq_f32
(
out0
,
vzero
);
...
@@ -673,7 +652,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -673,7 +652,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
out0
=
vmaxq_f32
(
out0
,
vzero
);
...
@@ -705,7 +683,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -705,7 +683,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
out0
=
vmaxq_f32
(
out0
,
vzero
);
...
@@ -737,7 +714,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -737,7 +714,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
out0
=
vmaxq_f32
(
out0
,
vzero
);
...
@@ -783,7 +759,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -783,7 +759,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
out0
=
vmaxq_f32
(
out0
,
vzero
);
...
@@ -817,7 +792,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -817,7 +792,6 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
out0
=
vmaxq_f32
(
out0
,
vzero
);
...
@@ -840,6 +814,202 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
...
@@ -840,6 +814,202 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
}
}
}
}
void
DepthwiseConvAddBNRelu3x3s2p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
input_height
=
input
->
dims
()[
2
];
const
int
input_width
=
input
->
dims
()[
3
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
_kernel_size
=
3
;
const
int
stride_height
=
2
;
const
int
stride_width
=
2
;
const
int
padding_height
=
1
;
const
int
padding_width
=
1
;
const
float
zero
=
0
;
const
int
input_channel_stride
=
input_height
*
input_width
;
const
int
output_channel_stride
=
output_height
*
output_width
;
const
int
filter_channel_stride
=
9
;
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
mutable_data
<
float
>
();
const
int
input_batch_stride
=
output_channels
*
input_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
output_channel_stride
;
const
int
filter_batch_stride
=
output_channels
*
output_channel_stride
;
const
float
*
pos1
,
*
pos2
,
*
pos3
,
*
filter1
,
*
filter2
,
*
filter3
,
*
output_ptr
;
int
hstart
,
wstart
,
hend
,
wend
;
float
result
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
filter1
=
filter_data
;
filter2
=
filter1
+
3
;
filter3
=
filter2
+
3
;
for
(
int
ph
=
0
;
ph
<
output_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
pw
++
)
{
hstart
=
ph
*
stride_height
-
padding_height
;
wstart
=
pw
*
stride_width
-
padding_width
;
hend
=
min
(
hstart
+
_kernel_size
,
input_height
+
padding_height
);
wend
=
min
(
wstart
+
_kernel_size
,
input_width
+
padding_width
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
pos1
=
input_data
+
hstart
*
input_width
+
wstart
;
pos2
=
input_data
+
(
hstart
+
1
)
*
input_width
+
wstart
;
pos3
=
input_data
+
(
hstart
+
2
)
*
input_width
+
wstart
;
output_ptr
=
output_data
+
ph
*
output_width
+
pw
;
if
(
hend
-
hstart
!=
3
||
wend
-
wstart
!=
3
)
{
result
=
0
;
float
fake_input
[
9
]
=
{
0
};
if
(
hstart
==
0
&&
wstart
==
0
)
{
// 左上角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
>=
3
-
hend
&&
k
>=
3
-
wend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
-
(
3
-
hend
))
*
input_width
+
k
-
(
3
-
wend
)];
}
}
}
}
else
if
(
hstart
==
0
&&
wend
==
input_width
)
{
// 右上角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
>=
3
-
hend
&&
k
<=
input_width
-
wstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
-
(
3
-
hend
))
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
hend
==
input_height
&&
wstart
==
0
)
{
// 左下角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
<=
input_height
-
1
-
hstart
&&
k
>=
3
-
wend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
-
(
3
-
wend
)];
}
}
}
}
else
if
(
hend
==
input_height
&&
wend
==
input_width
)
{
// 右下角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
<=
input_height
-
hstart
-
1
&&
k
<=
input_width
-
wstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
hstart
==
0
)
{
// 顶部
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
>=
3
-
hend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
-
(
3
-
hend
))
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
hend
==
input_height
)
{
// 底部
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
<=
input_height
-
hstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
wstart
==
0
)
{
// 左侧
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
k
>=
3
-
wend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
(
k
-
(
3
-
wend
))];
}
}
}
}
else
if
(
wend
==
input_width
)
{
// 右侧
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
k
<=
input_width
-
wstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
+
wstart
];
}
}
}
}
for
(
int
l
=
0
;
l
<
9
;
++
l
)
{
result
+=
fake_input
[
l
]
*
filter1
[
l
];
}
output_data
[
ph
*
output_width
+
pw
]
=
newscale_data
[
c
]
*
result
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
ph
*
output_width
+
pw
]
=
output_data
[
ph
*
output_width
+
pw
]
<
0
?
0
:
output_data
[
ph
*
output_width
+
pw
];
}
}
else
{
const
float32x4_t
data1
=
vld1q_f32
(
pos1
);
const
float32x4_t
data2
=
vld1q_f32
(
pos2
);
const
float32x4_t
data3
=
vld1q_f32
(
pos3
);
const
float32x4_t
v_filter1
=
vld1q_f32
(
filter1
);
const
float32x4_t
v_filter2
=
vld1q_f32
(
filter2
);
const
float32x4_t
v_filter3
=
vld1q_f32
(
filter3
);
float32x4_t
mula
=
vmulq_f32
(
data1
,
v_filter1
);
mula
=
vmlaq_f32
(
mula
,
data2
,
v_filter2
);
mula
=
vmlaq_f32
(
mula
,
data3
,
v_filter3
);
float32x2_t
res
=
vpadd_f32
(
vget_high_f32
(
vsetq_lane_f32
(
0
,
mula
,
3
)),
vget_low_f32
(
mula
));
res
=
vpadd_f32
(
res
,
res
);
output_data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
)
*
newscale_data
[
c
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
ph
*
output_width
+
pw
]
=
output_data
[
ph
*
output_width
+
pw
]
<
0
?
0
:
output_data
[
ph
*
output_width
+
pw
];
}
}
}
}
input_data
+=
input_channel_stride
;
output_data
+=
output_channel_stride
;
filter_data
+=
filter_channel_stride
;
}
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
}
}
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
src/operators/math/depthwise_conv_3x3.h
浏览文件 @
e14fb0d6
...
@@ -33,10 +33,11 @@ void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
...
@@ -33,10 +33,11 @@ void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
);
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
);
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
);
const
Tensor
*
new_bias
,
bool
if_bn
,
void
DepthwiseConvAddBNRelu3x3s2p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
bool
if_relu
);
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
);
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录