提交 ddf6b722 编写于 作者: 朔-望's avatar 朔-望

modify to 2 spaces indent & format code & rm build folder

上级 e35ef6fe
......@@ -2,5 +2,4 @@
Language: Cpp
BasedOnStyle: LLVM
Standard: Cpp11
IndentWidth: 4
...
此差异已折叠。
......@@ -28,15 +28,15 @@ SOFTWARE.
namespace paddle_mobile {
enum LogLevel {
kNO_LOG,
kLOG_ERROR,
kLOG_WARNING,
kLOG_INFO,
kLOG_DEBUG,
kLOG_DEBUG1,
kLOG_DEBUG2,
kLOG_DEBUG3,
kLOG_DEBUG4
kNO_LOG,
kLOG_ERROR,
kLOG_WARNING,
kLOG_INFO,
kLOG_DEBUG,
kLOG_DEBUG1,
kLOG_DEBUG2,
kLOG_DEBUG3,
kLOG_DEBUG4
};
// log level
......@@ -49,119 +49,117 @@ struct ToLog;
struct Print;
struct Print {
friend struct ToLog;
template <typename T> Print &operator<<(T const &value) {
buffer_ << value;
return *this;
}
private:
void print(LogLevel level) {
buffer_ << std::endl;
if (level == kLOG_ERROR) {
std::cerr << buffer_.str();
} else {
std::cout << buffer_.str();
}
friend struct ToLog;
template <typename T> Print &operator<<(T const &value) {
buffer_ << value;
return *this;
}
private:
void print(LogLevel level) {
buffer_ << std::endl;
if (level == kLOG_ERROR) {
std::cerr << buffer_.str();
} else {
std::cout << buffer_.str();
}
std::ostringstream buffer_;
}
std::ostringstream buffer_;
};
struct ToLog {
ToLog(LogLevel level = kLOG_DEBUG, const std::string &info = "")
: level_(level) {
unsigned blanks =
(unsigned)(level > kLOG_DEBUG ? (level - kLOG_DEBUG) * 4 : 1);
printer_ << logs[level] << " " << info << ":"
<< std::string(blanks, ' ');
}
template <typename T> ToLog &operator<<(T const &value) {
printer_ << value;
return *this;
}
~ToLog() { printer_.print(level_); }
private:
LogLevel level_;
Print printer_;
ToLog(LogLevel level = kLOG_DEBUG, const std::string &info = "")
: level_(level) {
unsigned blanks =
(unsigned)(level > kLOG_DEBUG ? (level - kLOG_DEBUG) * 4 : 1);
printer_ << logs[level] << " " << info << ":" << std::string(blanks, ' ');
}
template <typename T> ToLog &operator<<(T const &value) {
printer_ << value;
return *this;
}
~ToLog() { printer_.print(level_); }
private:
LogLevel level_;
Print printer_;
};
#define LOG(level) \
if (level > paddle_mobile::log_level) { \
} else \
paddle_mobile::ToLog( \
level, (std::stringstream() \
<< "[file: " \
<< (strrchr(__FILE__, '/') ? (strrchr(__FILE__, '/') + 1) \
: __FILE__) \
<< "] [line: " << __LINE__ << "] ") \
.str())
if (level > paddle_mobile::log_level) { \
} else \
paddle_mobile::ToLog( \
level, \
(std::stringstream() \
<< "[file: " \
<< (strrchr(__FILE__, '/') ? (strrchr(__FILE__, '/') + 1) : __FILE__) \
<< "] [line: " << __LINE__ << "] ") \
.str())
#define DLOG \
if (paddle_mobile::kLOG_DEBUG > paddle_mobile::log_level) { \
} else \
paddle_mobile::ToLog( \
paddle_mobile::kLOG_DEBUG, \
(std::stringstream() \
<< "[file: " \
<< (strrchr(__FILE__, '/') ? (strrchr(__FILE__, '/') + 1) \
: __FILE__) \
<< "] [line: " << __LINE__ << "] ") \
.str())
if (paddle_mobile::kLOG_DEBUG > paddle_mobile::log_level) { \
} else \
paddle_mobile::ToLog( \
paddle_mobile::kLOG_DEBUG, \
(std::stringstream() \
<< "[file: " \
<< (strrchr(__FILE__, '/') ? (strrchr(__FILE__, '/') + 1) : __FILE__) \
<< "] [line: " << __LINE__ << "] ") \
.str())
} // namespace paddle_mobile
#define LOGF(level, format, ...) \
if (level > paddle_mobile::log_level) { \
} else \
printf(format, ##__VA_ARGS__)
if (level > paddle_mobile::log_level) { \
} else \
printf(format, ##__VA_ARGS__)
#define DLOGF(format, ...) \
if (paddle_mobile::kLOG_DEBUG > paddle_mobile::log_level) { \
} else \
printf(format, ##__VA_ARGS__)
if (paddle_mobile::kLOG_DEBUG > paddle_mobile::log_level) { \
} else \
printf(format, ##__VA_ARGS__)
#else
namespace paddle_mobile {
enum LogLevel {
kNO_LOG,
kLOG_ERROR,
kLOG_WARNING,
kLOG_INFO,
kLOG_DEBUG,
kLOG_DEBUG1,
kLOG_DEBUG2,
kLOG_DEBUG3,
kLOG_DEBUG4
kNO_LOG,
kLOG_ERROR,
kLOG_WARNING,
kLOG_INFO,
kLOG_DEBUG,
kLOG_DEBUG1,
kLOG_DEBUG2,
kLOG_DEBUG3,
kLOG_DEBUG4
};
struct ToLog;
struct Print {
friend struct ToLog;
template <typename T> Print &operator<<(T const &value) {}
friend struct ToLog;
template <typename T> Print &operator<<(T const &value) {}
private:
private:
};
struct ToLog {
ToLog(LogLevel level) {}
ToLog(LogLevel level) {}
template <typename T> ToLog &operator<<(T const &value) { return *this; }
template <typename T> ToLog &operator<<(T const &value) { return *this; }
};
#define LOG(level) \
if (true) { \
} else \
paddle_mobile::ToLog(level)
if (true) { \
} else \
paddle_mobile::ToLog(level)
#define DLOG \
if (true) { \
} else \
paddle_mobile::ToLog(paddle_mobile::kLOG_DEBUG)
if (true) { \
} else \
paddle_mobile::ToLog(paddle_mobile::kLOG_DEBUG)
#define LOGF(level, format, ...)
......
......@@ -32,32 +32,32 @@ typedef DeviceType<kGPU_MALI> GPU_MALI;
//! data type
enum DataType {
PM_INVALID = -1,
PM_HALF = 0,
PM_FLOAT = 1,
PM_DOUBLE = 2,
PM_INT8 = 3,
PM_INT16 = 4,
PM_INT32 = 5,
PM_INT64 = 6,
PM_UINT8 = 7,
PM_UINT16 = 8,
PM_UINT32 = 9,
PM_STRING = 10,
PM_BOOL = 11,
PM_SHAPE = 12,
PM_TENSOR = 13
PM_INVALID = -1,
PM_HALF = 0,
PM_FLOAT = 1,
PM_DOUBLE = 2,
PM_INT8 = 3,
PM_INT16 = 4,
PM_INT32 = 5,
PM_INT64 = 6,
PM_UINT8 = 7,
PM_UINT16 = 8,
PM_UINT32 = 9,
PM_STRING = 10,
PM_BOOL = 11,
PM_SHAPE = 12,
PM_TENSOR = 13
};
//!
enum PMStatus {
PMSuccess = 0xFF, /*!< No errors */
PMNotInitialized = 0x01, /*!< Data not initialized. */
PMInvalidValue = 0x02, /*!< Incorrect variable value. */
PMMemAllocFailed = 0x03, /*!< Memory allocation error. */
PMUnKownError = 0x04, /*!< Unknown error. */
PMOutOfAuthority = 0x05, /*!< Try to modified data not your own*/
PMOutOfMem = 0x06, /*!< OOM error*/
PMUnImplError = 0x07, /*!< Unimplement error. */
PMWrongDevice = 0x08 /*!< un-correct device. */
PMSuccess = 0xFF, /*!< No errors */
PMNotInitialized = 0x01, /*!< Data not initialized. */
PMInvalidValue = 0x02, /*!< Incorrect variable value. */
PMMemAllocFailed = 0x03, /*!< Memory allocation error. */
PMUnKownError = 0x04, /*!< Unknown error. */
PMOutOfAuthority = 0x05, /*!< Try to modified data not your own*/
PMOutOfMem = 0x06, /*!< OOM error*/
PMUnImplError = 0x07, /*!< Unimplement error. */
PMWrongDevice = 0x08 /*!< un-correct device. */
};
} // namespace paddle_mobile
......@@ -24,74 +24,74 @@ namespace paddle_mobile {
template <int ID, typename Type> struct IDToType { typedef Type type_t; };
template <typename F, typename... Ts> struct VariantHelper {
static const size_t size = sizeof(F) > VariantHelper<Ts...>::size
? sizeof(F)
: VariantHelper<Ts...>::size;
static const size_t size = sizeof(F) > VariantHelper<Ts...>::size
? sizeof(F)
: VariantHelper<Ts...>::size;
inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) {
reinterpret_cast<F *>(data)->~F();
} else {
VariantHelper<Ts...>::Destroy(id, data);
}
inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) {
reinterpret_cast<F *>(data)->~F();
} else {
VariantHelper<Ts...>::Destroy(id, data);
}
}
};
template <typename F> struct VariantHelper<F> {
static const size_t size = sizeof(F);
inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) {
// reinterpret_cast<F*>(data)->~F();
} else {
// std::cout << "未匹配到 " << std::endl;
}
static const size_t size = sizeof(F);
inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) {
// reinterpret_cast<F*>(data)->~F();
} else {
// std::cout << "未匹配到 " << std::endl;
}
}
};
template <size_t size> class RawData {
public:
char data[size];
RawData() {}
RawData(const RawData &raw_data) { strcpy(data, raw_data.data); }
// void operator=(const RawData &raw_data){
// strcpy(data, raw_data.data);
// }
public:
char data[size];
RawData() {}
RawData(const RawData &raw_data) { strcpy(data, raw_data.data); }
// void operator=(const RawData &raw_data){
// strcpy(data, raw_data.data);
// }
};
template <typename... Ts> struct Variant {
Variant(const Variant &variant) {
// std::cout << " 赋值构造函数 " << std::endl;
type_id = variant.type_id;
data = variant.data;
}
Variant(const Variant &variant) {
// std::cout << " 赋值构造函数 " << std::endl;
type_id = variant.type_id;
data = variant.data;
}
Variant() : type_id(invalid_type()) {}
~Variant() {
// helper::Destroy(type_id, &data);
}
Variant() : type_id(invalid_type()) {}
~Variant() {
// helper::Destroy(type_id, &data);
}
template <typename T, typename... Args> void Set(Args &&... args) {
helper::Destroy(type_id, &data);
new (&data) T(std::forward<Args>(args)...);
type_id = typeid(T).hash_code();
}
template <typename T, typename... Args> void Set(Args &&... args) {
helper::Destroy(type_id, &data);
new (&data) T(std::forward<Args>(args)...);
type_id = typeid(T).hash_code();
}
template <typename T> T &Get() const {
if (type_id == typeid(T).hash_code()) {
return *const_cast<T *>(reinterpret_cast<const T *>(&data));
} else {
// std::cout << " bad cast in variant " << std::endl;
throw std::bad_cast();
}
template <typename T> T &Get() const {
if (type_id == typeid(T).hash_code()) {
return *const_cast<T *>(reinterpret_cast<const T *>(&data));
} else {
// std::cout << " bad cast in variant " << std::endl;
throw std::bad_cast();
}
}
size_t TypeId() const { return type_id; }
size_t TypeId() const { return type_id; }
private:
static inline size_t invalid_type() { return typeid(void).hash_code(); }
typedef VariantHelper<Ts...> helper;
size_t type_id;
RawData<helper::size> data;
private:
static inline size_t invalid_type() { return typeid(void).hash_code(); }
typedef VariantHelper<Ts...> helper;
size_t type_id;
RawData<helper::size> data;
};
template <typename T> struct Vistor { typedef T type_t; };
......
......@@ -27,102 +27,102 @@ namespace framework {
class BlockDesc;
class Attribute {
public:
static Attribute GetAttrValue(const proto::OpDesc::Attr &attr_desc) {
// std::cout << "begin get attr value" << std::endl;
Attribute attr;
switch (attr_desc.type()) {
case proto::AttrType::BOOLEAN: {
attr.Set<bool>(attr_desc.b());
break;
}
case proto::AttrType::INT: {
attr.Set<int>(attr_desc.i());
break;
}
case proto::AttrType::FLOAT: {
attr.Set<float>(attr_desc.f());
break;
}
case proto::AttrType::STRING: {
attr.Set<std::string>(attr_desc.s());
break;
}
case proto::AttrType::BOOLEANS: {
std::vector<bool> val(attr_desc.bools_size());
for (int i = 0; i < attr_desc.bools_size(); ++i) {
val[i] = attr_desc.bools(i);
}
attr.Set<std::vector<bool>>(val);
break;
}
case proto::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
val[i] = attr_desc.ints(i);
}
attr.Set<std::vector<int>>(val);
break;
}
case proto::AttrType::FLOATS: {
std::vector<float> val(attr_desc.floats_size());
for (int i = 0; i < attr_desc.floats_size(); ++i) {
val[i] = attr_desc.floats(i);
}
attr.Set<std::vector<float>>(val);
break;
}
case proto::AttrType::STRINGS: {
std::vector<std::string> val(attr_desc.strings_size());
for (int i = 0; i < attr_desc.strings_size(); ++i) {
val[i] = attr_desc.strings(i);
}
attr.Set<std::vector<std::string>>(val);
break;
}
case proto::AttrType::LONG: {
attr.Set<int64_t>(attr_desc.l());
break;
}
default:
// std::cout << " not support " << std::endl;
break;
}
// std::cout << "end get attr value" << std::endl;
return attr;
public:
static Attribute GetAttrValue(const proto::OpDesc::Attr &attr_desc) {
// std::cout << "begin get attr value" << std::endl;
Attribute attr;
switch (attr_desc.type()) {
case proto::AttrType::BOOLEAN: {
attr.Set<bool>(attr_desc.b());
break;
}
Attribute() {}
template <typename T, typename... Args> Attribute &Set(Args &&... args) {
variant_.Set<T>(args...);
return *this;
case proto::AttrType::INT: {
attr.Set<int>(attr_desc.i());
break;
}
case proto::AttrType::FLOAT: {
attr.Set<float>(attr_desc.f());
break;
}
case proto::AttrType::STRING: {
attr.Set<std::string>(attr_desc.s());
break;
}
case proto::AttrType::BOOLEANS: {
std::vector<bool> val(attr_desc.bools_size());
for (int i = 0; i < attr_desc.bools_size(); ++i) {
val[i] = attr_desc.bools(i);
}
attr.Set<std::vector<bool>>(val);
break;
}
case proto::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
val[i] = attr_desc.ints(i);
}
attr.Set<std::vector<int>>(val);
break;
}
case proto::AttrType::FLOATS: {
std::vector<float> val(attr_desc.floats_size());
for (int i = 0; i < attr_desc.floats_size(); ++i) {
val[i] = attr_desc.floats(i);
}
attr.Set<std::vector<float>>(val);
break;
}
case proto::AttrType::STRINGS: {
std::vector<std::string> val(attr_desc.strings_size());
for (int i = 0; i < attr_desc.strings_size(); ++i) {
val[i] = attr_desc.strings(i);
}
attr.Set<std::vector<std::string>>(val);
break;
}
case proto::AttrType::LONG: {
attr.Set<int64_t>(attr_desc.l());
break;
}
default:
// std::cout << " not support " << std::endl;
break;
}
// std::cout << "end get attr value" << std::endl;
return attr;
}
template <typename T> T &Get() const { return variant_.Get<T>(); }
Attribute() {}
template <typename T, typename... Args> Attribute &Set(Args &&... args) {
variant_.Set<T>(args...);
return *this;
}
private:
Variant<int, float, std::string, std::vector<int>, std::vector<float>,
std::vector<std::string>, bool, std::vector<bool>, BlockDesc *,
int64_t>
variant_;
template <typename T> T &Get() const { return variant_.Get<T>(); }
private:
Variant<int, float, std::string, std::vector<int>, std::vector<float>,
std::vector<std::string>, bool, std::vector<bool>, BlockDesc *,
int64_t>
variant_;
};
using AttributeMap = std::unordered_map<std::string, Attribute>;
class AttrReader {
public:
explicit AttrReader(const AttributeMap &attrs) : attrs_(attrs) {}
public:
explicit AttrReader(const AttributeMap &attrs) : attrs_(attrs) {}
template <typename T> inline T Get(const std::string &name) const {
// PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should
// be in
// AttributeMap",
// name);
return ((Attribute)attrs_.at(name)).Get<T>();
}
template <typename T> inline T Get(const std::string &name) const {
// PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should
// be in
// AttributeMap",
// name);
return ((Attribute)attrs_.at(name)).Get<T>();
}
private:
const AttributeMap &attrs_;
private:
const AttributeMap &attrs_;
};
} // namespace framework
......
......@@ -22,28 +22,28 @@ namespace paddle_mobile {
namespace framework {
std::vector<std::shared_ptr<VarDesc>> BlockDesc::Vars() const {
std::vector<std::shared_ptr<VarDesc>> res;
for (const auto &p : vars_) {
res.push_back(p.second);
}
return res;
std::vector<std::shared_ptr<VarDesc>> res;
for (const auto &p : vars_) {
res.push_back(p.second);
}
return res;
}
std::vector<std::shared_ptr<OpDesc>> BlockDesc::Ops() const {
std::vector<std::shared_ptr<OpDesc>> res;
for (const auto &op : ops_) {
res.push_back(op);
}
return res;
std::vector<std::shared_ptr<OpDesc>> res;
for (const auto &op : ops_) {
res.push_back(op);
}
return res;
}
BlockDesc::BlockDesc(const proto::BlockDesc &desc) : desc_(desc) {
for (const proto::VarDesc &var_desc : desc_.vars()) {
vars_[var_desc.name()].reset(new VarDesc(var_desc));
}
for (const proto::OpDesc &op_desc : desc_.ops()) {
ops_.emplace_back(new framework::OpDesc(op_desc));
}
for (const proto::VarDesc &var_desc : desc_.vars()) {
vars_[var_desc.name()].reset(new VarDesc(var_desc));
}
for (const proto::OpDesc &op_desc : desc_.ops()) {
ops_.emplace_back(new framework::OpDesc(op_desc));
}
}
} // namespace framework
......
......@@ -27,29 +27,28 @@ namespace paddle_mobile {
namespace framework {
class BlockDesc : PaddleMobileObject {
public:
BlockDesc(const proto::BlockDesc &desc);
public:
BlockDesc(const proto::BlockDesc &desc);
const int &ID() const { return desc_.idx(); }
const int &ID() const { return desc_.idx(); }
const int &Parent() const { return desc_.parent_idx(); }
const int &Parent() const { return desc_.parent_idx(); }
bool operator==(const paddle_mobile::framework::BlockDesc &in_block) const {
return this->ID() == in_block.ID() &&
this->Parent() == in_block.Parent();
}
bool operator==(const paddle_mobile::framework::BlockDesc &in_block) const {
return this->ID() == in_block.ID() && this->Parent() == in_block.Parent();
}
bool operator<(const paddle_mobile::framework::BlockDesc &in_block) const {
return this->ID() < in_block.ID() && this->Parent() < in_block.Parent();
}
bool operator<(const paddle_mobile::framework::BlockDesc &in_block) const {
return this->ID() < in_block.ID() && this->Parent() < in_block.Parent();
}
std::vector<std::shared_ptr<VarDesc>> Vars() const;
std::vector<std::shared_ptr<OpDesc>> Ops() const;
std::vector<std::shared_ptr<VarDesc>> Vars() const;
std::vector<std::shared_ptr<OpDesc>> Ops() const;
private:
proto::BlockDesc desc_;
std::vector<std::shared_ptr<OpDesc>> ops_;
std::unordered_map<std::string, std::shared_ptr<VarDesc>> vars_;
private:
proto::BlockDesc desc_;
std::vector<std::shared_ptr<OpDesc>> ops_;
std::unordered_map<std::string, std::shared_ptr<VarDesc>> vars_;
};
} // namespace framework
......@@ -58,13 +57,13 @@ class BlockDesc : PaddleMobileObject {
namespace std {
template <> struct hash<paddle_mobile::framework::BlockDesc> {
typedef paddle_mobile::framework::BlockDesc argument_type;
typedef std::size_t result_type;
result_type operator()(argument_type const &s) const noexcept {
result_type const h1(std::hash<int>{}(s.ID()));
result_type const h2(std::hash<int>{}(s.ID()));
return h1 ^ (h2 << 1);
}
typedef paddle_mobile::framework::BlockDesc argument_type;
typedef std::size_t result_type;
result_type operator()(argument_type const &s) const noexcept {
result_type const h1(std::hash<int>{}(s.ID()));
result_type const h2(std::hash<int>{}(s.ID()));
return h1 ^ (h2 << 1);
}
};
} // namespace std
......@@ -22,45 +22,45 @@ namespace paddle_mobile {
namespace framework {
enum class DataLayout {
kNHWC = 0,
kNCHW = 1,
kAnyLayout = 2,
kNHWC = 0,
kNCHW = 1,
kAnyLayout = 2,
};
inline DataLayout StringToDataLayout(const std::string &str) {
std::string s(str);
for (size_t i = 0; i < s.size(); ++i) {
s[i] = toupper(s[i]);
}
std::string s(str);
for (size_t i = 0; i < s.size(); ++i) {
s[i] = toupper(s[i]);
}
if (s == "NHWC") {
return DataLayout::kNHWC;
} else if (s == "NCHW") {
return DataLayout::kNCHW;
} else if (s == "ANYLAYOUT") {
return DataLayout::kAnyLayout;
} else {
// std::cout << "Unknown storage order string: %s", s;
}
if (s == "NHWC") {
return DataLayout::kNHWC;
} else if (s == "NCHW") {
return DataLayout::kNCHW;
} else if (s == "ANYLAYOUT") {
return DataLayout::kAnyLayout;
} else {
// std::cout << "Unknown storage order string: %s", s;
}
}
inline std::string DataLayoutToString(const DataLayout &data_layout) {
switch (data_layout) {
case DataLayout::kNHWC:
return "NHWC";
case DataLayout::kNCHW:
return "NCHW";
case DataLayout::kAnyLayout:
return "ANY_LAYOUT";
default:
break;
// std::cout << "unknown DataLayou %d", data_layout;
}
switch (data_layout) {
case DataLayout::kNHWC:
return "NHWC";
case DataLayout::kNCHW:
return "NCHW";
case DataLayout::kAnyLayout:
return "ANY_LAYOUT";
default:
break;
// std::cout << "unknown DataLayou %d", data_layout;
}
}
inline std::ostream &operator<<(std::ostream &out, const DataLayout &l) {
out << DataLayoutToString(l);
return out;
out << DataLayoutToString(l);
return out;
}
} // namespace framework
......
......@@ -24,68 +24,68 @@ namespace paddle_mobile {
namespace framework {
static void PassTensorData(Tensor *from, Tensor *to) {
to->ShareDataWith(*from);
*from = Tensor();
to->ShareDataWith(*from);
*from = Tensor();
}
void DataTransform(const OpKernelType &expected_kernel_type,
const OpKernelType &kernel_type_for_var,
const Tensor &input_tensor, Tensor *output_tensor) {
bool transformed = false;
Tensor in;
in.ShareDataWith(input_tensor);
Tensor out;
bool transformed = false;
Tensor in;
in.ShareDataWith(input_tensor);
Tensor out;
// // do layout transform
// if (NeedTransformLayout(expected_kernel_type.data_layout_,
// kernel_type_for_var.data_layout_)) {
// TransDataLayout(kernel_type_for_var, expected_kernel_type, in,
// &out);
// transformed = true;
// PassTensorData(&out, &in);
// }
//
// // do data type transform
// if (expected_kernel_type.data_type_ !=
// kernel_type_for_var.data_type_) {
// TransDataType(kernel_type_for_var, expected_kernel_type, in,
// &out);
// transformed = true;
// PassTensorData(&out, &in);
// }
//
// // do device transform
// if (!platform::is_same_place(kernel_type_for_var.place_,
// expected_kernel_type.place_)) {
// TransDataDevice(in, expected_kernel_type.place_, &out);
// transformed = true;
// PassTensorData(&out, &in);
// }
//
// PADDLE_ENFORCE(transformed, "No transform is applied, please
// check!");
// get output data
output_tensor->ShareDataWith(in);
// // do layout transform
// if (NeedTransformLayout(expected_kernel_type.data_layout_,
// kernel_type_for_var.data_layout_)) {
// TransDataLayout(kernel_type_for_var, expected_kernel_type, in,
// &out);
// transformed = true;
// PassTensorData(&out, &in);
// }
//
// // do data type transform
// if (expected_kernel_type.data_type_ !=
// kernel_type_for_var.data_type_) {
// TransDataType(kernel_type_for_var, expected_kernel_type, in,
// &out);
// transformed = true;
// PassTensorData(&out, &in);
// }
//
// // do device transform
// if (!platform::is_same_place(kernel_type_for_var.place_,
// expected_kernel_type.place_)) {
// TransDataDevice(in, expected_kernel_type.place_, &out);
// transformed = true;
// PassTensorData(&out, &in);
// }
//
// PADDLE_ENFORCE(transformed, "No transform is applied, please
// check!");
// get output data
output_tensor->ShareDataWith(in);
}
void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor,
Variable &out_var) {
// if (in_var.IsType<LoDTensor>()) {
// auto& in_lod_tensor = in_var.Get<LoDTensor>();
// auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>();
// tran_lod_tensor->set_lod(in_lod_tensor.lod());
// tran_lod_tensor->set_layout(in_lod_tensor.layout());
// tran_lod_tensor->ShareDataWith(tensor);
// } else if (in_var.IsType<SelectedRows>()) {
// auto& in_selected_rows = in_var.Get<SelectedRows>();
// auto* trans_selected_rows =
// out_var.GetMutable<SelectedRows>();
// trans_selected_rows->set_height(in_selected_rows.height());
// trans_selected_rows->set_rows(in_selected_rows.rows());
// trans_selected_rows->mutable_value()->ShareDataWith(tensor);
// } else {
// PADDLE_THROW("unknown var type");
// }
// if (in_var.IsType<LoDTensor>()) {
// auto& in_lod_tensor = in_var.Get<LoDTensor>();
// auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>();
// tran_lod_tensor->set_lod(in_lod_tensor.lod());
// tran_lod_tensor->set_layout(in_lod_tensor.layout());
// tran_lod_tensor->ShareDataWith(tensor);
// } else if (in_var.IsType<SelectedRows>()) {
// auto& in_selected_rows = in_var.Get<SelectedRows>();
// auto* trans_selected_rows =
// out_var.GetMutable<SelectedRows>();
// trans_selected_rows->set_height(in_selected_rows.height());
// trans_selected_rows->set_rows(in_selected_rows.rows());
// trans_selected_rows->mutable_value()->ShareDataWith(tensor);
// } else {
// PADDLE_THROW("unknown var type");
// }
}
} // namespace framework
......
......@@ -20,158 +20,156 @@ namespace framework {
/// @cond HIDDEN
template <int i> Dim<i> make_dim(const int64_t *d) {
return Dim<i>(*d, make_dim<i - 1>(d + 1));
return Dim<i>(*d, make_dim<i - 1>(d + 1));
}
template <> Dim<0> make_dim<0>(const int64_t *d) { return Dim<0>(*d); }
void make_ddim(DDim &ddim, const int64_t *dims, int n) {
switch (n) {
case 0:
ddim = make_dim<0>(dims);
break;
case 1:
ddim = make_dim<1>(dims);
break;
case 2:
ddim = make_dim<2>(dims);
break;
case 3:
ddim = make_dim<3>(dims);
break;
case 4:
ddim = make_dim<4>(dims);
break;
case 5:
ddim = make_dim<5>(dims);
break;
case 6:
ddim = make_dim<6>(dims);
break;
case 7:
ddim = make_dim<7>(dims);
break;
case 8:
ddim = make_dim<8>(dims);
break;
case 9:
ddim = make_dim<9>(dims);
break;
default:
// std::cout << "Dynamic dimensions must have between [1,
// 9]
// dimensions.";
break;
}
switch (n) {
case 0:
ddim = make_dim<0>(dims);
break;
case 1:
ddim = make_dim<1>(dims);
break;
case 2:
ddim = make_dim<2>(dims);
break;
case 3:
ddim = make_dim<3>(dims);
break;
case 4:
ddim = make_dim<4>(dims);
break;
case 5:
ddim = make_dim<5>(dims);
break;
case 6:
ddim = make_dim<6>(dims);
break;
case 7:
ddim = make_dim<7>(dims);
break;
case 8:
ddim = make_dim<8>(dims);
break;
case 9:
ddim = make_dim<9>(dims);
break;
default:
// std::cout << "Dynamic dimensions must have between [1,
// 9]
// dimensions.";
break;
}
}
/// @endcond
DDim make_ddim(std::initializer_list<int64_t> dims) {
DDim result(make_dim(0));
make_ddim(result, dims.begin(), dims.size());
return result;
DDim result(make_dim(0));
make_ddim(result, dims.begin(), dims.size());
return result;
}
DDim make_ddim(const std::vector<int64_t> &dims) {
DDim result(make_dim(0));
make_ddim(result, &dims[0], dims.size());
return result;
DDim result(make_dim(0));
make_ddim(result, &dims[0], dims.size());
return result;
}
DDim make_ddim(const std::vector<int> &dims) {
std::vector<int64_t> res(dims.size());
std::transform(dims.begin(), dims.end(), res.begin(),
[](int d) { return static_cast<int64_t>(d); });
return make_ddim(res);
std::vector<int64_t> res(dims.size());
std::transform(dims.begin(), dims.end(), res.begin(),
[](int d) { return static_cast<int64_t>(d); });
return make_ddim(res);
}
/// @cond HIDDEN
// XXX For some reason, putting this in an anonymous namespace causes
// errors
struct DynamicMutableIndexer : Vistor<int64_t &> {
public:
explicit DynamicMutableIndexer(int idx) : idx_(idx) {}
public:
explicit DynamicMutableIndexer(int idx) : idx_(idx) {}
template <int D> int64_t &operator()(Dim<D> &dim) const {
return dim[idx_];
}
template <int D> int64_t &operator()(Dim<D> &dim) const { return dim[idx_]; }
private:
int idx_;
private:
int idx_;
};
struct DynamicConstIndexer : public Vistor<int64_t> {
public:
explicit DynamicConstIndexer(int idx) : idx_(idx) {}
public:
explicit DynamicConstIndexer(int idx) : idx_(idx) {}
template <int D> int64_t operator()(const Dim<D> &dim) const {
return dim[idx_];
}
template <int D> int64_t operator()(const Dim<D> &dim) const {
return dim[idx_];
}
private:
int idx_;
private:
int idx_;
};
/// @endcond
int64_t &DDim::operator[](int idx) {
return DDim::ApplyVistor(DynamicMutableIndexer(idx), *this);
return DDim::ApplyVistor(DynamicMutableIndexer(idx), *this);
}
int64_t DDim::operator[](int idx) const {
return DDim::ApplyVistor(DynamicConstIndexer(idx), *this);
return DDim::ApplyVistor(DynamicConstIndexer(idx), *this);
}
int DDim::size() const { return arity(*this); }
bool DDim::operator==(DDim d) const {
// if (var.which() != d.getVar().which()) {
// return false;
// } else {
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d);
for (unsigned int i = 0; i < v1.size(); i++) {
if (v1[i] != v2[i]) {
return false;
}
// if (var.which() != d.getVar().which()) {
// return false;
// } else {
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d);
for (unsigned int i = 0; i < v1.size(); i++) {
if (v1[i] != v2[i]) {
return false;
}
}
return true;
// }
return true;
// }
}
bool DDim::operator!=(DDim d) const { return !(*this == d); }
DDim DDim::operator+(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d);
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d);
std::vector<int64_t> v3;
std::vector<int64_t> v3;
assert(v1.size() == v2.size());
assert(v1.size() == v2.size());
for (unsigned int i = 0; i < v1.size(); i++) {
v3.push_back(v1[i] + v2[i]);
}
for (unsigned int i = 0; i < v1.size(); i++) {
v3.push_back(v1[i] + v2[i]);
}
return make_ddim(v3);
return make_ddim(v3);
}
DDim DDim::operator*(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d);
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d);
std::vector<int64_t> v3;
std::vector<int64_t> v3;
assert(v1.size() == v2.size());
assert(v1.size() == v2.size());
for (unsigned int i = 0; i < v1.size(); i++) {
v3.push_back(v1[i] * v2[i]);
}
for (unsigned int i = 0; i < v1.size(); i++) {
v3.push_back(v1[i] * v2[i]);
}
return make_ddim(v3);
return make_ddim(v3);
}
int64_t get(const DDim &ddim, int idx) { return ddim[idx]; }
......@@ -180,152 +178,152 @@ void set(DDim &ddim, int idx, int value) { ddim[idx] = value; }
/// @cond HIDDEN
struct VectorizeVisitor : Vistor<void> {
std::vector<int64_t> &vector;
std::vector<int64_t> &vector;
explicit VectorizeVisitor(std::vector<int64_t> &v) : vector(v) {}
explicit VectorizeVisitor(std::vector<int64_t> &v) : vector(v) {}
template <typename T> void operator()(const T &t) {
vector.push_back(t.head);
this->operator()(t.tail);
}
template <typename T> void operator()(const T &t) {
vector.push_back(t.head);
this->operator()(t.tail);
}
void operator()(const Dim<0> &t) {}
void operator()(const Dim<0> &t) {}
};
/// @endcond
std::vector<int64_t> vectorize(const DDim &ddim) {
std::vector<int64_t> result;
VectorizeVisitor visitor(result);
DDim::ApplyVistor(visitor, ddim);
return result;
std::vector<int64_t> result;
VectorizeVisitor visitor(result);
DDim::ApplyVistor(visitor, ddim);
return result;
}
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
std::vector<int> vectorize2int(const DDim &ddim) {
std::vector<int64_t> temp = vectorize(ddim);
std::vector<int> result(temp.begin(), temp.end());
return result;
std::vector<int64_t> temp = vectorize(ddim);
std::vector<int> result(temp.begin(), temp.end());
return result;
}
struct ProductVisitor : Vistor<int64_t> {
template <int D> int64_t operator()(const Dim<D> &dim) {
return product(dim);
}
template <int D> int64_t operator()(const Dim<D> &dim) {
return product(dim);
}
};
int64_t product(const DDim &ddim) {
ProductVisitor visitor;
return DDim::ApplyVistor(visitor, ddim);
ProductVisitor visitor;
return DDim::ApplyVistor(visitor, ddim);
}
struct SliceVectorizeVisitor : Vistor<void> {
std::vector<int64_t> &vector;
int begin;
int end;
SliceVectorizeVisitor(std::vector<int64_t> &v, int b, int e)
: vector(v), begin(b), end(e) {
// PADDLE_ENFORCE(begin < end,
// "Begin index must be less than end index in
// ddim
// slice.");
// PADDLE_ENFORCE(begin >= 0,
// "Begin index can't be less than zero in
// ddim slice.");
std::vector<int64_t> &vector;
int begin;
int end;
SliceVectorizeVisitor(std::vector<int64_t> &v, int b, int e)
: vector(v), begin(b), end(e) {
// PADDLE_ENFORCE(begin < end,
// "Begin index must be less than end index in
// ddim
// slice.");
// PADDLE_ENFORCE(begin >= 0,
// "Begin index can't be less than zero in
// ddim slice.");
}
template <int S> void operator()(const Dim<S> &dim) {
if (begin == 0) {
vector.push_back(dim.head);
} else {
--begin;
}
template <int S> void operator()(const Dim<S> &dim) {
if (begin == 0) {
vector.push_back(dim.head);
} else {
--begin;
}
--end;
if (end > 0) {
this->operator()(dim.tail);
}
--end;
if (end > 0) {
this->operator()(dim.tail);
}
}
void operator()(const Dim<0> &dim) {
// PADDLE_ENFORCE(end == 0, "End index in ddim slice is out
// of bound.");
}
void operator()(const Dim<0> &dim) {
// PADDLE_ENFORCE(end == 0, "End index in ddim slice is out
// of bound.");
}
};
DDim slice_ddim(const DDim &ddim, int begin, int end) {
std::vector<int64_t> vec;
vec.reserve(end - begin);
SliceVectorizeVisitor visitor(vec, begin, end);
// boost::apply_visitor(visitor, dim);
DDim::ApplyVistor(visitor, ddim);
// visitor(ddim.var.Get<Dim<4>>());
return make_ddim(vec);
std::vector<int64_t> vec;
vec.reserve(end - begin);
SliceVectorizeVisitor visitor(vec, begin, end);
// boost::apply_visitor(visitor, dim);
DDim::ApplyVistor(visitor, ddim);
// visitor(ddim.var.Get<Dim<4>>());
return make_ddim(vec);
}
/// \cond HIDDEN
struct ArityVisitor : Vistor<int> {
template <int D> int operator()(Dim<D>) const { return D; }
template <int D> int operator()(Dim<D>) const { return D; }
};
/// \endcond
int arity(const DDim &d) {
ArityVisitor arityVisitor = ArityVisitor();
return DDim::ApplyVistor(arityVisitor, d);
// return arityVisitor(d.var.Get<Dim<4>>());
// return boost::apply_visitor(ArityVisitor(), d); }
ArityVisitor arityVisitor = ArityVisitor();
return DDim::ApplyVistor(arityVisitor, d);
// return arityVisitor(d.var.Get<Dim<4>>());
// return boost::apply_visitor(ArityVisitor(), d); }
}
/// \cond HIDDEN
/// \endcond
struct OSVistor : Vistor<std::ostream &> {
OSVistor(std::ostream &os) : os_(os) {}
OSVistor(std::ostream &os) : os_(os) {}
template <int D> std::ostream &operator()(Dim<D> dim) const {
return os_ << dim;
}
template <int D> std::ostream &operator()(Dim<D> dim) const {
return os_ << dim;
}
private:
std::ostream &os_;
private:
std::ostream &os_;
};
std::ostream &operator<<(std::ostream &os, const DDim &ddim) {
auto vistor = OSVistor(os);
DDim::ApplyVistor(vistor, ddim);
return os;
auto vistor = OSVistor(os);
DDim::ApplyVistor(vistor, ddim);
return os;
}
DDim::DDim(std::initializer_list<int64_t> init_list) {
*this = make_ddim(init_list);
*this = make_ddim(init_list);
}
DDim flatten_to_2d(const DDim &src, int num_col_dims) {
int rank = src.size();
return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
product(slice_ddim(src, num_col_dims, rank))});
int rank = src.size();
return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
product(slice_ddim(src, num_col_dims, rank))});
}
DDim flatten_to_1d(const DDim &src) { return make_ddim({product(src)}); }
DDim stride(const DDim &ddim) {
std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = 1;
for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i + 1];
}
return framework::make_ddim(strides);
std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = 1;
for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i + 1];
}
return framework::make_ddim(strides);
}
DDim stride_numel(const framework::DDim &ddim) {
std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = ddim[ddim.size() - 1];
for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i];
}
return framework::make_ddim(strides);
std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = ddim[ddim.size() - 1];
for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i];
}
return framework::make_ddim(strides);
}
} // namespace framework
......
......@@ -30,77 +30,77 @@ namespace framework {
* The number of dimensions must be between [1, 9].
*/
struct DDim {
typedef Variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>,
Dim<7>, Dim<8>, Dim<9>>
DDimVar;
DDimVar var;
template <typename Vistor>
static typename Vistor::type_t ApplyVistor(Vistor vistor, const DDim &d) {
if (d.var.TypeId() == typeid(Dim<0>).hash_code()) {
return vistor(d.var.Get<Dim<0>>());
} else if (d.var.TypeId() == typeid(Dim<1>).hash_code()) {
return vistor(d.var.Get<Dim<1>>());
} else if (d.var.TypeId() == typeid(Dim<2>).hash_code()) {
return vistor(d.var.Get<Dim<2>>());
} else if (d.var.TypeId() == typeid(Dim<3>).hash_code()) {
return vistor(d.var.Get<Dim<3>>());
} else if (d.var.TypeId() == typeid(Dim<4>).hash_code()) {
return vistor(d.var.Get<Dim<4>>());
} else if (d.var.TypeId() == typeid(Dim<5>).hash_code()) {
return vistor(d.var.Get<Dim<5>>());
} else if (d.var.TypeId() == typeid(Dim<6>).hash_code()) {
return vistor(d.var.Get<Dim<6>>());
} else if (d.var.TypeId() == typeid(Dim<7>).hash_code()) {
return vistor(d.var.Get<Dim<7>>());
} else if (d.var.TypeId() == typeid(Dim<8>).hash_code()) {
return vistor(d.var.Get<Dim<8>>());
} else if (d.var.TypeId() == typeid(Dim<9>).hash_code()) {
return vistor(d.var.Get<Dim<9>>());
} else {
printf(" dim not support \n");
throw std::bad_exception();
// return typename Vistor::type_t();
}
typedef Variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>,
Dim<7>, Dim<8>, Dim<9>>
DDimVar;
DDimVar var;
template <typename Vistor>
static typename Vistor::type_t ApplyVistor(Vistor vistor, const DDim &d) {
if (d.var.TypeId() == typeid(Dim<0>).hash_code()) {
return vistor(d.var.Get<Dim<0>>());
} else if (d.var.TypeId() == typeid(Dim<1>).hash_code()) {
return vistor(d.var.Get<Dim<1>>());
} else if (d.var.TypeId() == typeid(Dim<2>).hash_code()) {
return vistor(d.var.Get<Dim<2>>());
} else if (d.var.TypeId() == typeid(Dim<3>).hash_code()) {
return vistor(d.var.Get<Dim<3>>());
} else if (d.var.TypeId() == typeid(Dim<4>).hash_code()) {
return vistor(d.var.Get<Dim<4>>());
} else if (d.var.TypeId() == typeid(Dim<5>).hash_code()) {
return vistor(d.var.Get<Dim<5>>());
} else if (d.var.TypeId() == typeid(Dim<6>).hash_code()) {
return vistor(d.var.Get<Dim<6>>());
} else if (d.var.TypeId() == typeid(Dim<7>).hash_code()) {
return vistor(d.var.Get<Dim<7>>());
} else if (d.var.TypeId() == typeid(Dim<8>).hash_code()) {
return vistor(d.var.Get<Dim<8>>());
} else if (d.var.TypeId() == typeid(Dim<9>).hash_code()) {
return vistor(d.var.Get<Dim<9>>());
} else {
printf(" dim not support \n");
throw std::bad_exception();
// return typename Vistor::type_t();
}
}
DDim() { var.Set<Dim<1>>(Dim<1>()); }
DDim() { var.Set<Dim<1>>(Dim<1>()); }
template <int D> explicit DDim(const Dim<D> &in) { var.Set<Dim<D>>(in); }
template <int D> explicit DDim(const Dim<D> &in) { var.Set<Dim<D>>(in); }
/*implicit*/ DDim(std::initializer_list<int64_t> init_list);
/*implicit*/ DDim(std::initializer_list<int64_t> init_list);
template <int D> DDim &operator=(const Dim<D> &in) {
var.Set<Dim<D>>(in);
return *this;
}
template <int D> DDim &operator=(const Dim<D> &in) {
var.Set<Dim<D>>(in);
return *this;
}
int64_t &operator[](int idx);
int64_t &operator[](int idx);
int64_t operator[](int idx) const;
int64_t operator[](int idx) const;
// template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor) {
// return var.apply_visitor(visitor);
// }
//
// template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor)
// const {
// return var.apply_visitor(visitor);
// }
// template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor) {
// return var.apply_visitor(visitor);
// }
//
// template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor)
// const {
// return var.apply_visitor(visitor);
// }
DDimVar getVar() { return var; }
DDimVar getVar() { return var; }
bool operator==(DDim d) const;
bool operator==(DDim d) const;
bool operator!=(DDim d) const;
bool operator!=(DDim d) const;
DDim operator+(DDim d) const;
DDim operator+(DDim d) const;
DDim operator*(DDim d) const;
DDim operator*(DDim d) const;
int size() const;
int size() const;
};
/**
......
......@@ -25,199 +25,197 @@ namespace framework {
// Statically sized, statically indexed dimension
template <int i> struct Dim {
static constexpr int dimensions = i;
static constexpr int dimensions = i;
template <typename... Args>
HOSTDEVICE Dim(int64_t _head, Args... _tail) : head(_head), tail(_tail...) {
static_assert(sizeof...(_tail) == i - 1,
"Dim initialized with the wrong number of parameters");
}
template <typename... Args>
HOSTDEVICE Dim(int64_t _head, Args... _tail) : head(_head), tail(_tail...) {
static_assert(sizeof...(_tail) == i - 1,
"Dim initialized with the wrong number of parameters");
}
HOSTDEVICE
Dim(int64_t _head, const Dim<i - 1> &_tail) : head(_head), tail(_tail) {}
HOSTDEVICE
Dim(int64_t _head, const Dim<i - 1> &_tail) : head(_head), tail(_tail) {}
HOSTDEVICE
Dim() : head(0), tail() {}
HOSTDEVICE
Dim() : head(0), tail() {}
/** Construct a Dim from a linear index and size. Uses Fortran
* order
* indexing. */
HOSTDEVICE
Dim(int64_t idx, const Dim<i> &size)
: head(idx % size.head), tail(idx / size.head, size.tail) {}
/** Construct a Dim from a linear index and size. Uses Fortran
* order
* indexing. */
HOSTDEVICE
Dim(int64_t idx, const Dim<i> &size)
: head(idx % size.head), tail(idx / size.head, size.tail) {}
/** Construct a Dim with each dimension set to the given index */
HOSTDEVICE
Dim(int64_t idx) : head(idx), tail(idx) {}
/** Construct a Dim with each dimension set to the given index */
HOSTDEVICE
Dim(int64_t idx) : head(idx), tail(idx) {}
HOSTDEVICE
bool operator==(const Dim<i> &o) const {
return (head == o.head) && (tail == o.tail);
}
HOSTDEVICE
bool operator==(const Dim<i> &o) const {
return (head == o.head) && (tail == o.tail);
}
HOSTDEVICE
bool operator!=(const Dim<i> &o) const { return !(*this == o); }
HOSTDEVICE
bool operator!=(const Dim<i> &o) const { return !(*this == o); }
HOSTDEVICE
int64_t &operator[](int idx);
HOSTDEVICE
int64_t operator[](int idx) const;
HOSTDEVICE
int64_t &operator[](int idx);
HOSTDEVICE
int64_t operator[](int idx) const;
HOST std::string to_string() const;
HOST std::string to_string() const;
int64_t head;
Dim<i - 1> tail;
int64_t head;
Dim<i - 1> tail;
};
// Base case specialization
template <> struct Dim<0> {
static constexpr int dimensions = 0;
static constexpr int dimensions = 0;
HOSTDEVICE
Dim(int64_t _head) {}
HOSTDEVICE
Dim(int64_t _head) {}
HOSTDEVICE
Dim() {}
HOSTDEVICE
Dim() {}
HOSTDEVICE
Dim(int idx, const Dim<0> &size) {
HOSTDEVICE
Dim(int idx, const Dim<0> &size) {
#ifndef __CUDA_ARCH__
if (idx > 0) {
throw std::invalid_argument("Index out of range.");
}
if (idx > 0) {
throw std::invalid_argument("Index out of range.");
}
#else
PADDLE_ASSERT(idx == 0);
PADDLE_ASSERT(idx == 0);
#endif
}
}
HOSTDEVICE
bool operator==(const Dim<0> &o) const { return true; }
HOSTDEVICE
bool operator==(const Dim<0> &o) const { return true; }
HOSTDEVICE
bool operator!=(const Dim<0> &o) const { return false; }
HOSTDEVICE
bool operator!=(const Dim<0> &o) const { return false; }
HOSTDEVICE
int64_t &operator[](int idx);
HOSTDEVICE
int64_t operator[](int idx) const;
HOSTDEVICE
int64_t &operator[](int idx);
HOSTDEVICE
int64_t operator[](int idx) const;
};
namespace {
// Helper for accessing Dim classes
template <int i> struct DimGetter {
// Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) {
return DimGetter<i - 1>::impl(d.tail);
}
// Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
return DimGetter<i - 1>::impl(d.tail);
}
// Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) {
return DimGetter<i - 1>::impl(d.tail);
}
// Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
return DimGetter<i - 1>::impl(d.tail);
}
};
// Eureka! We found the element!
template <> struct DimGetter<0> {
// Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) {
return d.head;
}
// Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
return d.head;
}
// Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) {
return d.head;
}
// Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) { return d.head; }
};
template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) {
#ifndef __CUDA_ARCH__
if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension");
}
if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension");
}
#else
PADDLE_ASSERT(idx >= 0);
PADDLE_ASSERT(idx >= 0);
#endif
if (idx == 0) {
return dim.head;
}
return indexer(dim.tail, idx - 1);
if (idx == 0) {
return dim.head;
}
return indexer(dim.tail, idx - 1);
}
template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) {
#ifndef __CUDA_ARCH__
throw std::invalid_argument("Invalid index");
throw std::invalid_argument("Invalid index");
#else
PADDLE_ASSERT(false);
PADDLE_ASSERT(false);
#if CUDA_VERSION < 8000
// On CUDA versions previous to 8.0, only __shared__ variables
// could be declared as static in the device code.
int64_t head = 0;
// On CUDA versions previous to 8.0, only __shared__ variables
// could be declared as static in the device code.
int64_t head = 0;
#else
static int64_t head = 0;
static int64_t head = 0;
#endif
return head;
return head;
#endif
}
template <int D> HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) {
#ifndef __CUDA_ARCH__
if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension");
}
if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension");
}
#else
PADDLE_ASSERT(idx >= 0);
PADDLE_ASSERT(idx >= 0);
#endif
if (idx == 0) {
return dim.head;
}
return indexer(dim.tail, idx - 1);
if (idx == 0) {
return dim.head;
}
return indexer(dim.tail, idx - 1);
}
template <> HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) {
#ifndef __CUDA_ARCH__
throw std::invalid_argument("Invalid index");
throw std::invalid_argument("Invalid index");
#else
PADDLE_ASSERT(false);
PADDLE_ASSERT(false);
#if CUDA_VERSION < 8000
// On CUDA versions previous to 8.0, only __shared__ variables
// could be declared as static in the device code.
int64_t head = 0;
// On CUDA versions previous to 8.0, only __shared__ variables
// could be declared as static in the device code.
int64_t head = 0;
#else
static int64_t head = 0;
static int64_t head = 0;
#endif
return head;
return head;
#endif
}
} // namespace
// Static access to constant Dim
template <int i, int l> HOSTDEVICE int64_t get(const Dim<l> &d) {
return DimGetter<i>::impl(d);
return DimGetter<i>::impl(d);
}
// Static access to mutable Dim
template <int i, int l> HOSTDEVICE int64_t &get(Dim<l> &d) {
return DimGetter<i>::impl(d);
return DimGetter<i>::impl(d);
}
// Dynamic access to constant Dim
template <int l> HOSTDEVICE int64_t Dim<l>::operator[](int i) const {
// std::cout << "l: " << l << std::endl;
return indexer(*this, i);
// std::cout << "l: " << l << std::endl;
return indexer(*this, i);
}
// Dynamic access to mutable Dim
template <int l> HOSTDEVICE int64_t &Dim<l>::operator[](int i) {
return indexer(*this, i);
return indexer(*this, i);
}
// Dynamic access to constant Dim
inline HOSTDEVICE int64_t Dim<0>::operator[](int i) const {
return indexer(*this, i);
return indexer(*this, i);
}
// Dynamic access to mutable Dim
inline HOSTDEVICE int64_t &Dim<0>::operator[](int i) {
return indexer(*this, i);
return indexer(*this, i);
}
// Dynamic access to constant Dim
......@@ -225,52 +223,52 @@ inline HOSTDEVICE int64_t &Dim<0>::operator[](int i) {
template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int64_t>::type get(const Dim<l> &d,
int i) {
return d[i];
return d[i];
}
// Dynamic access to mutable Dim
template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int64_t &>::type get(Dim<l> &d,
int i) {
return d[i];
return d[i];
}
// Dot product of two dims
template <int i>
HOSTDEVICE int64_t linearize(const Dim<i> &a, const Dim<i> &b) {
return a.head * b.head + linearize(a.tail, b.tail);
return a.head * b.head + linearize(a.tail, b.tail);
}
// Base case dot product of two Dims
// Notice it is inline because it is no longer a template
template <>
HOSTDEVICE inline int64_t linearize(const Dim<0> &a, const Dim<0> &b) {
return 0;
return 0;
}
// Product of a Dim
template <int i> HOSTDEVICE int64_t product(const Dim<i> &a, int prod = 1) {
return prod * a.head * product(a.tail);
return prod * a.head * product(a.tail);
}
// Base case product of a Dim
// Notice it is inline because it is no longer a template
template <> HOSTDEVICE inline int64_t product(const Dim<0> &a, int prod) {
return prod;
return prod;
}
// Is 0 <= idx_i < size_i for all i?
template <int i>
HOSTDEVICE bool contained(const Dim<i> &idx, const Dim<i> &size) {
return ((0 <= idx.head) && (idx.head < size.head) &&
contained(idx.tail, size.tail));
return ((0 <= idx.head) && (idx.head < size.head) &&
contained(idx.tail, size.tail));
}
// Base case of is 0 <= idx_i < size_i ?
// Notice it is inline because it is no longer a template
template <>
HOSTDEVICE inline bool contained(const Dim<0> &idx, const Dim<0> &size) {
return true;
return true;
}
/**
......@@ -278,14 +276,14 @@ HOSTDEVICE inline bool contained(const Dim<0> &idx, const Dim<0> &size) {
*/
template <int i>
HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i> &src, int mul = 1) {
return Dim<i>(mul, ex_prefix_mul(src.tail, mul * src.head));
return Dim<i>(mul, ex_prefix_mul(src.tail, mul * src.head));
}
///\cond HIDDEN
// Base case of ex_prefix_mul
// Notice it is inline because it is no longer a template
template <> HOSTDEVICE inline Dim<0> ex_prefix_mul(const Dim<0> &src, int mul) {
return Dim<0>();
return Dim<0>();
}
///\endcond
......@@ -293,36 +291,36 @@ template <> HOSTDEVICE inline Dim<0> ex_prefix_mul(const Dim<0> &src, int mul) {
* Add two dimensions together
*/
template <int i> HOSTDEVICE Dim<i> dim_plus(const Dim<i> &a, const Dim<i> &b) {
return Dim<i>(a.head + b.head, dim_plus(a.tail, b.tail));
return Dim<i>(a.head + b.head, dim_plus(a.tail, b.tail));
}
// Base case
template <>
HOSTDEVICE inline Dim<0> dim_plus(const Dim<0> &a, const Dim<0> &b) {
return Dim<0>();
return Dim<0>();
}
template <int i>
HOSTDEVICE Dim<i> operator+(const Dim<i> &lhs, const Dim<i> &rhs) {
return dim_plus(lhs, rhs);
return dim_plus(lhs, rhs);
}
/**
* Multiply two dimensions together
*/
template <int i> HOSTDEVICE Dim<i> dim_mult(const Dim<i> &a, const Dim<i> &b) {
return Dim<i>(a.head * b.head, dim_mult(a.tail, b.tail));
return Dim<i>(a.head * b.head, dim_mult(a.tail, b.tail));
}
// Base case
template <>
HOSTDEVICE inline Dim<0> dim_mult(const Dim<0> &a, const Dim<0> &b) {
return Dim<0>();
return Dim<0>();
}
template <int i>
HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) {
return dim_mult(lhs, rhs);
return dim_mult(lhs, rhs);
}
/**
......@@ -337,8 +335,8 @@ HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) {
template <int i>
HOSTDEVICE Dim<i> normalize_strides(const Dim<i> &size, const Dim<i> &stride) {
int norm_stride = size.head == 1 ? 0 : stride.head;
return Dim<i>(norm_stride, normalize_strides(size.tail, stride.tail));
int norm_stride = size.head == 1 ? 0 : stride.head;
return Dim<i>(norm_stride, normalize_strides(size.tail, stride.tail));
}
///\cond HIDDEN
......@@ -346,7 +344,7 @@ HOSTDEVICE Dim<i> normalize_strides(const Dim<i> &size, const Dim<i> &stride) {
template <>
HOSTDEVICE inline Dim<0> normalize_strides(const Dim<0> &size,
const Dim<0> &stride) {
return Dim<0>();
return Dim<0>();
}
///\endcond
......@@ -361,7 +359,7 @@ HOSTDEVICE inline Dim<0> normalize_strides(const Dim<0> &size,
template <typename... Args>
HOSTDEVICE Dim<sizeof...(Args)> make_dim(Args... idxes) {
return Dim<sizeof...(Args)>(idxes...);
return Dim<sizeof...(Args)>(idxes...);
}
// Allows us to output a Dim
......@@ -369,8 +367,8 @@ HOSTDEVICE Dim<sizeof...(Args)> make_dim(Args... idxes) {
template <int i>
typename std::enable_if<(i > 1), std::ostream &>::type
operator<<(std::ostream &os, const Dim<i> &d) {
os << d.head << ", " << d.tail;
return os;
os << d.head << ", " << d.tail;
return os;
}
// Base case that allows us to output a Dim
......@@ -378,34 +376,34 @@ operator<<(std::ostream &os, const Dim<i> &d) {
template <int i>
typename std::enable_if<(i == 1), std::ostream &>::type
operator<<(std::ostream &os, const Dim<i> &d) {
os << d.head;
return os;
os << d.head;
return os;
}
inline std::ostream &operator<<(std::ostream &os, const Dim<0> &d) {
return os;
return os;
}
template <int i> HOST std::string Dim<i>::to_string() const {
std::stringstream stream;
std::stringstream stream;
stream << *this;
stream << *this;
return stream.str();
return stream.str();
}
template <int D>
HOSTDEVICE Dim<D> linear_to_dimension(int linear_index, Dim<D> extents) {
Dim<D> result;
Dim<D> result;
for (int i = 0; i < D - 1; ++i) {
result[i] = linear_index % extents[i];
linear_index /= extents[i];
}
for (int i = 0; i < D - 1; ++i) {
result[i] = linear_index % extents[i];
linear_index /= extents[i];
}
result[D - 1] = linear_index;
result[D - 1] = linear_index;
return result;
return result;
}
} // namespace framework
......
......@@ -26,66 +26,66 @@ namespace framework {
template <typename Dtype>
Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
// const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// for (int i = 0; i < blocks.size(); ++i) {
// std::shared_ptr<BlockDesc> block_desc = blocks[i];
// std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
// for (int j = 0; j < ops.size(); ++j) {
// std::shared_ptr<OpDesc> op = ops[j];
// if (op->Type() == "conv2d" && op->Input("Input")[0] ==
// "pixel") {
// Attribute strides_attr = op->GetAttrMap().at("strides");
// std::vector<int> stride =
// strides_attr.Get<std::vector<int>>(); for (int k = 0; k <
// stride.size(); ++k) {
// }
// std::shared_ptr<operators::ConvOp<Dtype, float>> conv =
// std::make_shared<operators::ConvOp<Dtype, float>>(
// op->Type(), op->GetInputs(), op->GetOutputs(),
// op->GetAttrMap(), program_.scope);
// ops_of_block_[*block_desc.get()].push_back(conv);
// }
// }
// }
// const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// for (int i = 0; i < blocks.size(); ++i) {
// std::shared_ptr<BlockDesc> block_desc = blocks[i];
// std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
// for (int j = 0; j < ops.size(); ++j) {
// std::shared_ptr<OpDesc> op = ops[j];
// if (op->Type() == "conv2d" && op->Input("Input")[0] ==
// "pixel") {
// Attribute strides_attr = op->GetAttrMap().at("strides");
// std::vector<int> stride =
// strides_attr.Get<std::vector<int>>(); for (int k = 0; k <
// stride.size(); ++k) {
// }
// std::shared_ptr<operators::ConvOp<Dtype, float>> conv =
// std::make_shared<operators::ConvOp<Dtype, float>>(
// op->Type(), op->GetInputs(), op->GetOutputs(),
// op->GetAttrMap(), program_.scope);
// ops_of_block_[*block_desc.get()].push_back(conv);
// }
// }
// }
}
template <typename Dtype>
std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) {
// feed
auto scope = program_.scope;
Variable *g_feed_value = scope->Var("pixel");
auto tensor = g_feed_value->GetMutable<Tensor>();
tensor->ShareDataWith(t);
// feed
auto scope = program_.scope;
Variable *g_feed_value = scope->Var("pixel");
auto tensor = g_feed_value->GetMutable<Tensor>();
tensor->ShareDataWith(t);
Variable *con_output = scope->Var("conv2d_0.tmp_0");
Tensor *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 16, 32, 32});
// std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims() <<
// std::endl;
Variable *con_output = scope->Var("conv2d_0.tmp_0");
Tensor *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 16, 32, 32});
// std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims() <<
// std::endl;
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(t, 0);
return out_tensor;
predict(t, 0);
return out_tensor;
}
template <typename Dtype>
void Executor<Dtype>::predict(const Tensor &t, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
}
template class Executor<CPU>;
......
......@@ -35,23 +35,23 @@ namespace paddle_mobile {
namespace framework {
template <typename Dtype> class Executor {
public:
Executor();
public:
Executor();
Executor(const Program<Dtype> p);
Executor(const Program<Dtype> p);
std::shared_ptr<Tensor> predict(Tensor &t);
std::shared_ptr<Tensor> predict(Tensor &t);
public:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
public:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
void predict(const Tensor &t, int block_id);
void predict(const Tensor &t, int block_id);
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
};
} // namespace framework
......
此差异已折叠。
此差异已折叠。
......@@ -22,291 +22,289 @@ namespace paddle_mobile {
namespace framework {
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os << "{";
for (auto &v : lod) {
os << "{";
for (auto &v : lod) {
os << "{";
bool is_first = true;
for (auto &i : v) {
if (is_first) {
os << i;
is_first = false;
} else {
os << ", " << i;
}
}
os << "}";
bool is_first = true;
for (auto &i : v) {
if (is_first) {
os << i;
is_first = false;
} else {
os << ", " << i;
}
}
os << "}";
}
os << "}";
return os;
return os;
}
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
// PADDLE_ENFORCE(t.type().hash_code() ==
// typeid(float).hash_code());
// if (!platform::is_cpu_place(t.place())) {
// LoDTensor tt;
// framework::TensorCopy(t, platform::CPUPlace(), &tt);
// platform::DeviceContextPool &pool =
// platform::DeviceContextPool::Instance(); auto &dev_ctx =
// *pool.Get(t.place()); dev_ctx.Wait();
//
// os << tt;
// return os;
// }
os << "dim: " << t.dims() << "\n";
os << "lod: " << t.lod() << "\n";
// only print first ten elements
int64_t size = t.numel() < 10 ? t.numel() : 10;
for (int64_t i = 0; i < size; ++i) {
os << t.data<float>()[i] << " ";
}
return os;
// PADDLE_ENFORCE(t.type().hash_code() ==
// typeid(float).hash_code());
// if (!platform::is_cpu_place(t.place())) {
// LoDTensor tt;
// framework::TensorCopy(t, platform::CPUPlace(), &tt);
// platform::DeviceContextPool &pool =
// platform::DeviceContextPool::Instance(); auto &dev_ctx =
// *pool.Get(t.place()); dev_ctx.Wait();
//
// os << tt;
// return os;
// }
os << "dim: " << t.dims() << "\n";
os << "lod: " << t.lod() << "\n";
// only print first ten elements
int64_t size = t.numel() < 10 ? t.numel() : 10;
for (int64_t i = 0; i < size; ++i) {
os << t.data<float>()[i] << " ";
}
return os;
}
std::string LoDToString(const LoD &lod) {
std::ostringstream stream;
stream << lod;
return stream.str();
std::ostringstream stream;
stream << lod;
return stream.str();
}
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
size_t elem_end) {
// PADDLE_ENFORCE_LT(level, in.size());
// PADDLE_ENFORCE_LT(elem_end, in[level].size());
LoD res;
res.resize(in.size() - level);
// copy the first level
res[0].assign(in[level].begin() + elem_begin,
in[level].begin() + elem_end + 1);
for (size_t lvl = 1; lvl < res.size(); lvl++) {
const auto &in_level = in[level + lvl];
const auto &above_level = res[lvl - 1];
auto &out_level = res[lvl];
out_level.assign(in_level.begin() + above_level.front(),
in_level.begin() + above_level.back() + 1);
}
for (size_t lvl = 0; lvl < res.size(); lvl++) {
// to make the first offset equals 0, all the elements minus the
// first
// element
size_t front = res[lvl].front();
for (auto &ele : res[lvl]) {
ele -= front;
}
// PADDLE_ENFORCE_LT(level, in.size());
// PADDLE_ENFORCE_LT(elem_end, in[level].size());
LoD res;
res.resize(in.size() - level);
// copy the first level
res[0].assign(in[level].begin() + elem_begin,
in[level].begin() + elem_end + 1);
for (size_t lvl = 1; lvl < res.size(); lvl++) {
const auto &in_level = in[level + lvl];
const auto &above_level = res[lvl - 1];
auto &out_level = res[lvl];
out_level.assign(in_level.begin() + above_level.front(),
in_level.begin() + above_level.back() + 1);
}
for (size_t lvl = 0; lvl < res.size(); lvl++) {
// to make the first offset equals 0, all the elements minus the
// first
// element
size_t front = res[lvl].front();
for (auto &ele : res[lvl]) {
ele -= front;
}
return res;
}
return res;
}
LoD ToAbsOffset(const LoD &in) {
// the lowest level stores relative offsets
if (in.empty() || in.size() == 1)
return in;
LoD result = in;
for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
for (size_t i = 0; i < in[level].size(); ++i) {
size_t index = in[level][i];
result[level][i] = result[level + 1][index];
}
// the lowest level stores relative offsets
if (in.empty() || in.size() == 1)
return in;
LoD result = in;
for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
for (size_t i = 0; i < in[level].size(); ++i) {
size_t index = in[level][i];
result[level][i] = result[level + 1][index];
}
return result;
}
return result;
}
bool operator==(const LoD &a, const LoD &b) {
if (a.size() != b.size()) {
return false;
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); i++) {
const auto &a_level = a[i];
const auto &b_level = b[i];
if (a_level.size() != b_level.size()) {
return false;
}
for (size_t i = 0; i < a.size(); i++) {
const auto &a_level = a[i];
const auto &b_level = b[i];
if (a_level.size() != b_level.size()) {
return false;
}
for (size_t j = 0; j < a_level.size(); j++) {
if (a_level[j] != b_level[j]) {
return false;
}
}
for (size_t j = 0; j < a_level.size(); j++) {
if (a_level[j] != b_level[j]) {
return false;
}
}
return true;
}
return true;
}
bool CheckLoD(const LoD &in, int tensor_height) {
if (in.empty())
return true;
for (const auto &level : in) {
// check: there should be more than 2 offsets existing in each
// level.
if (level.size() < 2)
return false;
// check: the first offset(the begin offset) of each level
// should be 0.
if (level.front() != 0)
return false;
// check: all the offsets in a level should be ascending(no same
// items
// allows).
if (!std::is_sorted(level.begin(), level.begin(),
[](size_t a, size_t b) {
if (a < b)
return true;
return false;
})) {
std::cout << "ascending error";
return false;
}
}
// check: the lowest level's last offset should equals
// `tensor_height` if
// tensor_height>0.
if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
return false;
// check: the higher level's last offset should equals the lower
// level's
// size-1.
// NOTE LoD store the levels from top to bottom, so the higher level
// goes
// first.
for (size_t level = 0; level < in.size() - 1; level++) {
if (in[level].back() != in[level + 1].size() - 1)
return false;
}
if (in.empty())
return true;
for (const auto &level : in) {
// check: there should be more than 2 offsets existing in each
// level.
if (level.size() < 2)
return false;
// check: the first offset(the begin offset) of each level
// should be 0.
if (level.front() != 0)
return false;
// check: all the offsets in a level should be ascending(no same
// items
// allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b)
return true;
return false;
})) {
std::cout << "ascending error";
return false;
}
}
// check: the lowest level's last offset should equals
// `tensor_height` if
// tensor_height>0.
if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
return false;
// check: the higher level's last offset should equals the lower
// level's
// size-1.
// NOTE LoD store the levels from top to bottom, so the higher level
// goes
// first.
for (size_t level = 0; level < in.size() - 1; level++) {
if (in[level].back() != in[level + 1].size() - 1)
return false;
}
return true;
}
bool CheckAbsLoD(const LoD &in, int tensor_height) {
if (in.empty())
return true;
for (const auto &level : in) {
// check: all the offsets in a level should be ascending(no same
// items
// allows).
if (!std::is_sorted(level.begin(), level.begin(),
[](size_t a, size_t b) {
if (a < b)
return true;
return false;
})) {
return false;
}
// check: there should be more than 2 offsets existing in each
// level.
if (level.size() < 2)
return false;
// check: the first offset of each level should be 0, and the
// last should be
// the same(the height of underlying tensor).
if (level.front() != 0)
return false;
if (tensor_height < 0) {
tensor_height = level.back();
} else if ((size_t)tensor_height != level.back()) {
return false;
}
}
if (in.empty())
return true;
for (const auto &level : in) {
// check: all the offsets in a level should be ascending(no same
// items
// allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b)
return true;
return false;
})) {
return false;
}
// check: there should be more than 2 offsets existing in each
// level.
if (level.size() < 2)
return false;
// check: the first offset of each level should be 0, and the
// last should be
// the same(the height of underlying tensor).
if (level.front() != 0)
return false;
if (tensor_height < 0) {
tensor_height = level.back();
} else if ((size_t)tensor_height != level.back()) {
return false;
}
}
return true;
}
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
size_t end_idx, size_t start_level) {
LoD sub_lod;
for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
// PADDLE_ENFORCE_LE(start_idx, end_idx);
// PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
std::vector<size_t> level_lens;
for (size_t i = start_idx; i < end_idx; ++i) {
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
}
sub_lod.emplace_back(level_lens);
start_idx = lod[level_idx][start_idx];
end_idx = lod[level_idx][end_idx];
LoD sub_lod;
for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
// PADDLE_ENFORCE_LE(start_idx, end_idx);
// PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
std::vector<size_t> level_lens;
for (size_t i = start_idx; i < end_idx; ++i) {
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
}
sub_lod.emplace_back(level_lens);
start_idx = lod[level_idx][start_idx];
end_idx = lod[level_idx][end_idx];
}
return LoDAndOffset{sub_lod, {start_idx, end_idx}};
return LoDAndOffset{sub_lod, {start_idx, end_idx}};
}
void AppendLoD(LoD *lod, const LoD &lod_length) {
// PADDLE_ENFORCE(
// lod->empty() || lod->size() == lod_length.size(),
// "The lod_length should has the same size with the appended
// lod.");
if (lod->empty()) {
for (size_t i = 0; i < lod_length.size(); ++i) {
lod->emplace_back(1, 0); // size = 1, value = 0;
}
*lod = LoD(lod_length.size(), std::vector<size_t>({0}));
// PADDLE_ENFORCE(
// lod->empty() || lod->size() == lod_length.size(),
// "The lod_length should has the same size with the appended
// lod.");
if (lod->empty()) {
for (size_t i = 0; i < lod_length.size(); ++i) {
lod->emplace_back(1, 0); // size = 1, value = 0;
}
for (size_t i = 0; i < lod->size(); ++i) {
auto &level = (*lod)[i];
for (size_t len : lod_length[i]) {
level.push_back(level.back() + len);
}
*lod = LoD(lod_length.size(), std::vector<size_t>({0}));
}
for (size_t i = 0; i < lod->size(); ++i) {
auto &level = (*lod)[i];
for (size_t len : lod_length[i]) {
level.push_back(level.back() + len);
}
}
}
void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
{ // the 1st field, uint32_t version for LoDTensor
constexpr uint32_t version = 0;
os.write(reinterpret_cast<const char *>(&version), sizeof(version));
{ // the 1st field, uint32_t version for LoDTensor
constexpr uint32_t version = 0;
os.write(reinterpret_cast<const char *>(&version), sizeof(version));
}
{
// the 2st field, LoD information
// uint64_t lod_level
// uint64_t lod_level_1 size in byte.
// int* lod_level_1 data
// ...
auto lod = tensor.lod();
uint64_t size = lod.size();
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
for (auto &each : lod) {
size = each.size() * sizeof(framework::LoD::value_type::value_type);
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
os.write(reinterpret_cast<const char *>(each.data()),
static_cast<std::streamsize>(size));
}
{
// the 2st field, LoD information
// uint64_t lod_level
// uint64_t lod_level_1 size in byte.
// int* lod_level_1 data
// ...
auto lod = tensor.lod();
uint64_t size = lod.size();
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
for (auto &each : lod) {
size = each.size() * sizeof(framework::LoD::value_type::value_type);
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
os.write(reinterpret_cast<const char *>(each.data()),
static_cast<std::streamsize>(size));
}
}
// the 3st field, Tensor
TensorToStream(os, static_cast<Tensor>(tensor));
}
// the 3st field, Tensor
TensorToStream(os, static_cast<Tensor>(tensor));
}
void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
{
// the 1st field, unit32_t version for LoDTensor
uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version));
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is
// supported");
}
{
// the 2st field, LoD information
uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
auto &lod = *tensor->mutable_lod();
lod.resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
std::vector<size_t> tmp(size / sizeof(size_t));
is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size));
lod[i] = tmp;
}
{
// the 1st field, unit32_t version for LoDTensor
uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version));
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is
// supported");
}
{
// the 2st field, LoD information
uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
auto &lod = *tensor->mutable_lod();
lod.resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
std::vector<size_t> tmp(size / sizeof(size_t));
is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size));
lod[i] = tmp;
}
// the 3st filed, Tensor
TensorFromStream(is, static_cast<Tensor *>(tensor));
}
// the 3st filed, Tensor
TensorFromStream(is, static_cast<Tensor *>(tensor));
}
} // namespace framework
......
......@@ -102,45 +102,45 @@ bool CheckAbsLoD(const LoD &in, int tensor_height = -1);
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
class LoDTensor : public Tensor {
public:
LoDTensor() : Tensor() {}
explicit LoDTensor(const LoD &lod) : lod_(lod) {}
void set_lod(const LoD &lod) { lod_ = lod; }
const LoD &lod() const { return lod_; }
LoD *mutable_lod() { return &lod_; }
/*
* Get the start offset and end offset of an element from LoD.
*/
std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const {
// PADDLE_ENFORCE_LT(level, NumLevels());
// PADDLE_ENFORCE_LT(elem, NumElements(level));
return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]);
}
/*
* Number of LoDTensor's levels, each level has units of data, for
* example,
* in the sentence's view, article, paragraph, sentence are 3
* levels.
*/
size_t NumLevels() const { return lod_.size(); }
/*
* Number of elements in a level.
*/
size_t NumElements(size_t level = 0) const {
// PADDLE_ENFORCE_LT(level, NumLevels());
// the last offset is the end of last element
return (lod_)[level].size() - 1;
}
private:
LoD lod_;
public:
LoDTensor() : Tensor() {}
explicit LoDTensor(const LoD &lod) : lod_(lod) {}
void set_lod(const LoD &lod) { lod_ = lod; }
const LoD &lod() const { return lod_; }
LoD *mutable_lod() { return &lod_; }
/*
* Get the start offset and end offset of an element from LoD.
*/
std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const {
// PADDLE_ENFORCE_LT(level, NumLevels());
// PADDLE_ENFORCE_LT(elem, NumElements(level));
return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]);
}
/*
* Number of LoDTensor's levels, each level has units of data, for
* example,
* in the sentence's view, article, paragraph, sentence are 3
* levels.
*/
size_t NumLevels() const { return lod_.size(); }
/*
* Number of elements in a level.
*/
size_t NumElements(size_t level = 0) const {
// PADDLE_ENFORCE_LT(level, NumLevels());
// the last offset is the end of last element
return (lod_)[level].size() - 1;
}
private:
LoD lod_;
};
/*
......@@ -155,26 +155,26 @@ class LoDTensor : public Tensor {
*/
template <typename T>
LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) {
LoD abs_lod = ToAbsOffset(lod);
const auto &lod_level = lod[level];
size_t num_instances = source.dims()[0];
// new tensor
LoDTensor tensor;
tensor.set_lod(lod);
auto dims = source.dims();
dims[0] = lod_level.back();
tensor.Resize(dims);
tensor.mutable_data<T>();
// PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1);
for (size_t ins = 0; ins < num_instances; ins++) {
for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) {
auto slice = tensor.Slice(elem, elem + 1);
TensorCopy(source.Slice(ins, ins + 1), &slice);
}
LoD abs_lod = ToAbsOffset(lod);
const auto &lod_level = lod[level];
size_t num_instances = source.dims()[0];
// new tensor
LoDTensor tensor;
tensor.set_lod(lod);
auto dims = source.dims();
dims[0] = lod_level.back();
tensor.Resize(dims);
tensor.mutable_data<T>();
// PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1);
for (size_t ins = 0; ins < num_instances; ins++) {
for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) {
auto slice = tensor.Slice(elem, elem + 1);
TensorCopy(source.Slice(ins, ins + 1), &slice);
}
return tensor;
}
return tensor;
}
// Get the absolute offset of a lod[start_level][start_idx:end_idx] and
......
......@@ -8,51 +8,51 @@ namespace paddle_mobile {
namespace framework {
OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) {
for (int i = 0; i < desc_.inputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.inputs(i);
std::vector<std::string> &args = inputs_[var.parameter()];
int arg_size = var.arguments_size();
for (int j = 0; j < arg_size; ++j) {
args.push_back(var.arguments(j));
}
for (int i = 0; i < desc_.inputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.inputs(i);
std::vector<std::string> &args = inputs_[var.parameter()];
int arg_size = var.arguments_size();
for (int j = 0; j < arg_size; ++j) {
args.push_back(var.arguments(j));
}
for (int i = 0; i < desc_.outputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.outputs(i);
std::vector<std::string> &args = outputs_[var.parameter()];
int arg_size = var.arguments_size();
for (int j = 0; j < arg_size; ++j) {
args.push_back(var.arguments(j));
}
}
for (int i = 0; i < desc_.outputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.outputs(i);
std::vector<std::string> &args = outputs_[var.parameter()];
int arg_size = var.arguments_size();
for (int j = 0; j < arg_size; ++j) {
args.push_back(var.arguments(j));
}
for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
std::string attr_name = attr.name();
if (attr.type() != proto::AttrType::BLOCK) {
attrs_[attr_name] = Attribute::GetAttrValue(attr);
// if (attr.type() == proto::AttrType::INT){
// std::cout << " attrName " << attr_name << " " <<
// attrs_[attr_name].Get<int>() << std::endl;
// }
}
}
for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
std::string attr_name = attr.name();
if (attr.type() != proto::AttrType::BLOCK) {
attrs_[attr_name] = Attribute::GetAttrValue(attr);
// if (attr.type() == proto::AttrType::INT){
// std::cout << " attrName " << attr_name << " " <<
// attrs_[attr_name].Get<int>() << std::endl;
// }
}
}
}
const std::vector<std::string> &OpDesc::Input(const std::string &name) const {
return inputs_.find(name)->second;
return inputs_.find(name)->second;
}
const std::vector<std::string> &OpDesc::Output(const std::string &name) const {
return outputs_.find(name)->second;
return outputs_.find(name)->second;
}
Attribute OpDesc::GetAttr(const std::string &name) const {
auto it = attrs_.find(name);
return it->second;
auto it = attrs_.find(name);
return it->second;
}
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const {
return attrs_;
return attrs_;
}
} // namespace framework
......
......@@ -26,25 +26,25 @@ namespace paddle_mobile {
namespace framework {
class OpDesc : PaddleMobileObject {
public:
OpDesc(const proto::OpDesc &desc);
const std::vector<std::string> &Input(const std::string &name) const;
const std::vector<std::string> &Output(const std::string &name) const;
Attribute GetAttr(const std::string &name) const;
public:
OpDesc(const proto::OpDesc &desc);
const std::vector<std::string> &Input(const std::string &name) const;
const std::vector<std::string> &Output(const std::string &name) const;
Attribute GetAttr(const std::string &name) const;
const VariableNameMap &GetInputs() { return inputs_; }
const VariableNameMap &GetInputs() { return inputs_; }
const VariableNameMap &GetOutputs() { return outputs_; }
const VariableNameMap &GetOutputs() { return outputs_; }
const AttributeMap &GetAttrMap() const;
const AttributeMap &GetAttrMap() const;
const std::string &Type() { return desc_.type(); };
const std::string &Type() { return desc_.type(); };
private:
proto::OpDesc desc_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;
private:
proto::OpDesc desc_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;
};
} // namespace framework
......
......@@ -25,13 +25,13 @@ namespace paddle_mobile {
namespace framework {
template <typename Dtype> struct OpInfo {
OpCreator<Dtype> creator_;
const OpCreator<Dtype> &Creator() const {
// PADDLE_ENFORCE_NOT_NULL(creator_,
// "Operator Creator has not been
// registered");
return creator_;
}
OpCreator<Dtype> creator_;
const OpCreator<Dtype> &Creator() const {
// PADDLE_ENFORCE_NOT_NULL(creator_,
// "Operator Creator has not been
// registered");
return creator_;
}
};
template <typename Dtype> class OpInfoMap;
......@@ -39,55 +39,55 @@ template <typename Dtype> class OpInfoMap;
template <typename Dtype> static OpInfoMap<Dtype> *g_op_info_map = nullptr;
template <typename Dtype> class OpInfoMap {
public:
static OpInfoMap &Instance() {
if (g_op_info_map<Dtype> == nullptr) {
g_op_info_map<Dtype> = new OpInfoMap();
}
return *g_op_info_map<Dtype>;
};
bool Has(const std::string &op_type) const {
return map_.find(op_type) != map_.end();
}
void Insert(const std::string &type, const OpInfo<Dtype> &info) {
// PADDLE_ENFORCE(!Has(type), "Operator %s has been
// registered", type);
map_.insert({type, info});
}
const OpInfo<Dtype> &Get(const std::string &type) const {
auto op_info_ptr = GetNullable(type);
// PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not
// been
// registered",
// type);
return *op_info_ptr;
public:
static OpInfoMap &Instance() {
if (g_op_info_map<Dtype> == nullptr) {
g_op_info_map<Dtype> = new OpInfoMap();
}
const OpInfo<Dtype> *GetNullable(const std::string &type) const {
auto it = map_.find(type);
if (it == map_.end()) {
return nullptr;
} else {
return &it->second;
}
return *g_op_info_map<Dtype>;
};
bool Has(const std::string &op_type) const {
return map_.find(op_type) != map_.end();
}
void Insert(const std::string &type, const OpInfo<Dtype> &info) {
// PADDLE_ENFORCE(!Has(type), "Operator %s has been
// registered", type);
map_.insert({type, info});
}
const OpInfo<Dtype> &Get(const std::string &type) const {
auto op_info_ptr = GetNullable(type);
// PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not
// been
// registered",
// type);
return *op_info_ptr;
}
const OpInfo<Dtype> *GetNullable(const std::string &type) const {
auto it = map_.find(type);
if (it == map_.end()) {
return nullptr;
} else {
return &it->second;
}
}
const std::unordered_map<std::string, OpInfo<Dtype>> &map() const {
return map_;
}
const std::unordered_map<std::string, OpInfo<Dtype>> &map() const {
return map_;
}
std::unordered_map<std::string, OpInfo<Dtype>> *mutable_map() {
return &map_;
}
std::unordered_map<std::string, OpInfo<Dtype>> *mutable_map() {
return &map_;
}
private:
OpInfoMap() = default;
std::unordered_map<std::string, OpInfo<Dtype>> map_;
private:
OpInfoMap() = default;
std::unordered_map<std::string, OpInfo<Dtype>> map_;
// DISABLE_COPY_AND_ASSIGN(OpInfoMap);
// DISABLE_COPY_AND_ASSIGN(OpInfoMap);
};
} // namespace framework
......
......@@ -24,41 +24,40 @@ SOFTWARE.
namespace paddle_mobile {
namespace framework {
struct OpKernelType {
struct Hash {
size_t operator()(const OpKernelType &key) const {
int data_type = static_cast<int>(key.data_type_) << LEFT_SHIFT;
int data_layout = static_cast<int>(key.data_layout_)
<< (LEFT_SHIFT * 2);
struct Hash {
size_t operator()(const OpKernelType &key) const {
int data_type = static_cast<int>(key.data_type_) << LEFT_SHIFT;
int data_layout = static_cast<int>(key.data_layout_) << (LEFT_SHIFT * 2);
std::hash<int> hasher;
return hasher(data_type + data_layout);
}
};
std::hash<int> hasher;
return hasher(data_type + data_layout);
}
};
// place, data_type, library_type kinds less than 2^8
constexpr static int LEFT_SHIFT = 8;
// place, data_type, library_type kinds less than 2^8
constexpr static int LEFT_SHIFT = 8;
proto::VarType::Type data_type_;
DataLayout data_layout_;
proto::VarType::Type data_type_;
DataLayout data_layout_;
OpKernelType(proto::VarType::Type data_type,
DataLayout data_layout = DataLayout::kAnyLayout)
: data_type_(data_type), data_layout_(data_layout) {}
OpKernelType(proto::VarType::Type data_type,
DataLayout data_layout = DataLayout::kAnyLayout)
: data_type_(data_type), data_layout_(data_layout) {}
bool operator==(const OpKernelType &o) const {
return data_type_ == o.data_type_ && data_layout_ == o.data_layout_;
}
bool operator==(const OpKernelType &o) const {
return data_type_ == o.data_type_ && data_layout_ == o.data_layout_;
}
bool operator!=(const OpKernelType &o) const { return !(*this == o); }
bool operator!=(const OpKernelType &o) const { return !(*this == o); }
};
inline bool NeedTransformLayout(const DataLayout &l, const DataLayout &r) {
return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout && l != r;
return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout && l != r;
}
inline bool TransFromNeeded(const OpKernelType &l, const OpKernelType &r) {
return (l.data_type_ != r.data_type_) ||
NeedTransformLayout(l.data_layout_, r.data_layout_);
return (l.data_type_ != r.data_type_) ||
NeedTransformLayout(l.data_layout_, r.data_layout_);
}
} // namespace framework
......
......@@ -30,7 +30,7 @@ OperatorBase<Dtype>::OperatorBase(const std::string &type,
std::shared_ptr<Scope> scope)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs),
scope_(scope) {
CheckAllInputOutputSet();
CheckAllInputOutputSet();
}
template <typename Dtype>
void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
......
......@@ -49,50 +49,50 @@ static std::unordered_map<
{"fetch", {{"X"}, {"Out"}}}};
template <typename Dtype> class OperatorBase : PaddleMobileObject {
public:
OperatorBase(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope);
virtual ~OperatorBase() {}
virtual void Run() const = 0;
public:
OperatorBase(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope);
virtual ~OperatorBase() {}
virtual void Run() const = 0;
const VariableNameMap &Inputs() const { return inputs_; }
const VariableNameMap &Outputs() const { return outputs_; }
const std::string &Type() const { return type_; }
const AttributeMap &Attrs() const { return attrs_; }
void ClearVariables(const std::vector<std::string> &var_names) const {
if (this->scope_) {
this->scope_->EraseVars(var_names);
}
const VariableNameMap &Inputs() const { return inputs_; }
const VariableNameMap &Outputs() const { return outputs_; }
const std::string &Type() const { return type_; }
const AttributeMap &Attrs() const { return attrs_; }
void ClearVariables(const std::vector<std::string> &var_names) const {
if (this->scope_) {
this->scope_->EraseVars(var_names);
}
}
protected:
std::shared_ptr<Scope> scope_;
std::string type_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;
protected:
std::shared_ptr<Scope> scope_;
std::string type_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;
private:
void CheckAllInputOutputSet() const;
private:
void CheckAllInputOutputSet() const;
};
template <typename Dtype>
class OperatorWithKernel : public OperatorBase<Dtype> {
public:
OperatorWithKernel(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, std::shared_ptr<Scope> scope)
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {}
virtual void InferShape() const = 0;
virtual void Run() const = 0;
public:
OperatorWithKernel(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope)
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {}
virtual void InferShape() const = 0;
virtual void Run() const = 0;
};
template <typename Dtype, typename P> class OpKernelBase : PaddleMobileObject {
public:
virtual void Compute(const P &para) const = 0;
public:
virtual void Compute(const P &para) const = 0;
virtual ~OpKernelBase() = default;
virtual ~OpKernelBase() = default;
};
} // namespace framework
......
......@@ -24,13 +24,13 @@ SOFTWARE.
namespace paddle_mobile {
class PaddleMobileObject {
public:
virtual std::string ToString() {
char address[128] = {0};
sprintf(address, "%p", this);
return std::string(address);
}
public:
virtual std::string ToString() {
char address[128] = {0};
sprintf(address, "%p", this);
return std::string(address);
}
private:
private:
};
} // namespace paddle_mobile
......@@ -25,71 +25,71 @@ namespace paddle_mobile {
namespace framework {
Node &Node::operator>(std::shared_ptr<Node> node) {
outputs_.push_back(node);
std::shared_ptr<Node> this_node;
node->inputs_.push_back(this);
return *node;
outputs_.push_back(node);
std::shared_ptr<Node> this_node;
node->inputs_.push_back(this);
return *node;
}
bool Node::operator==(const Node &in) {
if (in.type_ == this->type_) {
if (this->outputs_.size() == in.outputs_.size()) {
for (int i = 0; i < outputs_.size(); ++i) {
if (!(*outputs_[i] == *in.outputs_[i])) {
return false;
}
}
} else {
return false;
if (in.type_ == this->type_) {
if (this->outputs_.size() == in.outputs_.size()) {
for (int i = 0; i < outputs_.size(); ++i) {
if (!(*outputs_[i] == *in.outputs_[i])) {
return false;
}
}
} else {
return false;
return false;
}
return true;
} else {
return false;
}
return true;
}
std::string Node::ToString(std::string blank, const Node *node) const {
std::stringstream ss;
ss << type_ << "-> \n";
std::stringstream ss;
ss << type_ << "-> \n";
if (inputs_.size() > 1 && node != inputs_.back()) {
return ss.str();
} else if (inputs_.size() > 1 && node == inputs_.back()) {
ss << "\n" << blank << type_ << "\n";
}
for (int i = 0; i < outputs_.size(); ++i) {
ss << blank << outputs_[i]->ToString(blank + " ", this) << "";
}
if (inputs_.size() > 1 && node != inputs_.back()) {
return ss.str();
} else if (inputs_.size() > 1 && node == inputs_.back()) {
ss << "\n" << blank << type_ << "\n";
}
for (int i = 0; i < outputs_.size(); ++i) {
ss << blank << outputs_[i]->ToString(blank + " ", this) << "";
}
return ss.str();
}
std::string Node::ToString() const { return this->ToString(" ", this); }
Node &Node::To(int index) {
if (index == 0) {
this->outputs_.clear();
}
if (index == 0) {
this->outputs_.clear();
}
for (int j = 0; j < this->outputs_.size(); ++j) {
outputs_[j]->To(index - 1);
}
return *this;
for (int j = 0; j < this->outputs_.size(); ++j) {
outputs_[j]->To(index - 1);
}
return *this;
}
uint Node::depth(uint begin) {
uint depth = 0;
begin++;
for (int i = 0; i < outputs_.size(); ++i) {
uint output_depth = outputs_[i]->depth(begin);
depth = output_depth > depth ? output_depth : depth;
}
return begin > depth ? begin : depth;
uint depth = 0;
begin++;
for (int i = 0; i < outputs_.size(); ++i) {
uint output_depth = outputs_[i]->depth(begin);
depth = output_depth > depth ? output_depth : depth;
}
return begin > depth ? begin : depth;
}
Print &operator<<(Print &printer, const Node &node) {
printer << node.ToString();
return printer;
printer << node.ToString();
return printer;
}
} // namespace framework
......
......@@ -29,22 +29,22 @@ namespace paddle_mobile {
namespace framework {
class Node : PaddleMobileObject {
public:
Node(const std::string &type) : type_(type) {}
Node(std::shared_ptr<OpDesc> op_desc)
: op_desc_(op_desc), type_(op_desc->Type()){};
Node &operator>(std::shared_ptr<Node> node);
bool operator==(const Node &in);
std::string ToString() const;
Node &To(int index);
uint depth(uint begin = 0);
public:
Node(const std::string &type) : type_(type) {}
Node(std::shared_ptr<OpDesc> op_desc)
: op_desc_(op_desc), type_(op_desc->Type()){};
Node &operator>(std::shared_ptr<Node> node);
bool operator==(const Node &in);
std::string ToString() const;
Node &To(int index);
uint depth(uint begin = 0);
private:
std::shared_ptr<OpDesc> op_desc_;
std::string ToString(std::string blank, const Node *node) const;
std::vector<std::shared_ptr<Node>> outputs_;
std::vector<Node *> inputs_;
std::string type_;
private:
std::shared_ptr<OpDesc> op_desc_;
std::string ToString(std::string blank, const Node *node) const;
std::vector<std::shared_ptr<Node>> outputs_;
std::vector<Node *> inputs_;
std::string type_;
};
Print &operator<<(Print &printer, const Node &node);
......
......@@ -26,49 +26,48 @@ std::shared_ptr<ProgramDesc> ProgramOptimize::Optimize() {}
std::shared_ptr<ProgramDesc>
ProgramOptimize::FushionOptimize(std::shared_ptr<ProgramDesc> ori_des) {
for (int i = 0; i < ori_des->Blocks().size(); ++i) {
std::unordered_map<std::string, std::shared_ptr<Node>> output_nodes;
std::shared_ptr<Node> begin_node;
auto block = ori_des->Block(i);
// DLOG << " ops size: " << block->Ops().size();
for (int j = 0; j < block->Ops().size(); ++j) {
auto op = block->Ops()[j];
auto op_type = op->Type();
// DLOG << "op type: " << op_type << " index: " << j;
if (op_input_output_key.find(op->Type()) ==
op_input_output_key.end()) {
return NULL;
}
for (int i = 0; i < ori_des->Blocks().size(); ++i) {
std::unordered_map<std::string, std::shared_ptr<Node>> output_nodes;
std::shared_ptr<Node> begin_node;
auto block = ori_des->Block(i);
// DLOG << " ops size: " << block->Ops().size();
for (int j = 0; j < block->Ops().size(); ++j) {
auto op = block->Ops()[j];
auto op_type = op->Type();
// DLOG << "op type: " << op_type << " index: " << j;
if (op_input_output_key.find(op->Type()) == op_input_output_key.end()) {
return NULL;
}
std::shared_ptr<Node> node = std::make_shared<Node>(op);
if (j == 0) {
begin_node = node;
}
std::shared_ptr<Node> node = std::make_shared<Node>(op);
if (j == 0) {
begin_node = node;
}
auto input_keys = op_input_output_key.at(op->Type()).first;
for (auto input_key : input_keys) {
auto op_inputs = op->Input(input_key);
for (int l = 0; l < op_inputs.size(); ++l) {
std::string input_key = op_inputs[l];
if (output_nodes.find(input_key) != output_nodes.end()) {
auto input_node = output_nodes[input_key];
*input_node > node;
}
}
}
auto output_keys = op_input_output_key.at(op_type).second;
for (auto output_key : output_keys) {
auto op_outputs = op->Output(output_key);
for (int k = 0; k < op_outputs.size(); ++k) {
output_nodes[op_outputs[k]] = node;
}
}
auto input_keys = op_input_output_key.at(op->Type()).first;
for (auto input_key : input_keys) {
auto op_inputs = op->Input(input_key);
for (int l = 0; l < op_inputs.size(); ++l) {
std::string input_key = op_inputs[l];
if (output_nodes.find(input_key) != output_nodes.end()) {
auto input_node = output_nodes[input_key];
*input_node > node;
}
}
}
DLOG << "node: \n" << *begin_node;
auto output_keys = op_input_output_key.at(op_type).second;
for (auto output_key : output_keys) {
auto op_outputs = op->Output(output_key);
for (int k = 0; k < op_outputs.size(); ++k) {
output_nodes[op_outputs[k]] = node;
}
}
}
return ori_des;
DLOG << "node: \n" << *begin_node;
}
return ori_des;
}
} // namespace framework
} // namespace paddle_mobile
......@@ -26,16 +26,16 @@ namespace paddle_mobile {
namespace framework {
class ProgramOptimize {
public:
ProgramOptimize() {}
std::shared_ptr<ProgramDesc> Optimize();
std::shared_ptr<ProgramDesc>
FushionOptimize(std::shared_ptr<ProgramDesc> ori_des);
public:
ProgramOptimize() {}
std::shared_ptr<ProgramDesc> Optimize();
std::shared_ptr<ProgramDesc>
FushionOptimize(std::shared_ptr<ProgramDesc> ori_des);
private:
// std::shared_ptr<ProgramDesc> ori_desc_;
std::vector<std::unordered_map<std::string, std::shared_ptr<Node>>>
outputs_nodes_;
private:
// std::shared_ptr<ProgramDesc> ori_desc_;
std::vector<std::unordered_map<std::string, std::shared_ptr<Node>>>
outputs_nodes_;
};
} // namespace framework
} // namespace paddle_mobile
......@@ -28,12 +28,12 @@ namespace framework {
template <typename Dtype, Precision P = Precision::FP32>
class Program : PaddleMobileObject {
public:
std::shared_ptr<ProgramDesc> originProgram;
std::shared_ptr<ProgramDesc> optimizeProgram;
std::shared_ptr<Scope> scope;
public:
std::shared_ptr<ProgramDesc> originProgram;
std::shared_ptr<ProgramDesc> optimizeProgram;
std::shared_ptr<Scope> scope;
private:
private:
};
} // namespace framework
......
......@@ -8,14 +8,14 @@ namespace paddle_mobile {
namespace framework {
ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) : desc_(desc) {
for (auto &block_desc : *desc_.mutable_blocks()) {
// new framework::BlockDesc(block_desc)
blocks_.emplace_back(std::make_shared<BlockDesc>(block_desc));
}
for (auto &block_desc : *desc_.mutable_blocks()) {
// new framework::BlockDesc(block_desc)
blocks_.emplace_back(std::make_shared<BlockDesc>(block_desc));
}
}
std::shared_ptr<BlockDesc> ProgramDesc::Block(size_t idx) {
return blocks_[idx];
return blocks_[idx];
}
} // namespace framework
......
......@@ -28,14 +28,14 @@ namespace paddle_mobile {
namespace framework {
class ProgramDesc : PaddleMobileObject {
public:
ProgramDesc(const proto::ProgramDesc &desc);
std::shared_ptr<BlockDesc> Block(size_t idx);
const std::vector<std::shared_ptr<BlockDesc>> &Blocks() { return blocks_; };
public:
ProgramDesc(const proto::ProgramDesc &desc);
std::shared_ptr<BlockDesc> Block(size_t idx);
const std::vector<std::shared_ptr<BlockDesc>> &Blocks() { return blocks_; };
private:
std::vector<std::shared_ptr<BlockDesc>> blocks_;
proto::ProgramDesc desc_;
private:
std::vector<std::shared_ptr<BlockDesc>> blocks_;
proto::ProgramDesc desc_;
};
} // namespace framework
......
......@@ -7,20 +7,20 @@ namespace paddle_mobile {
namespace framework {
Scope &Scope::NewScope() const {
std::unique_lock<std::mutex> lock(mutex_);
kids_.push_back(new Scope(this));
return *kids_.back();
std::unique_lock<std::mutex> lock(mutex_);
kids_.push_back(new Scope(this));
return *kids_.back();
}
Variable *Scope::Var(const std::string &name) {
auto *pvar = FindVarLocally(name);
if (pvar != nullptr) {
return pvar;
};
pvar = new Variable;
vars_[name] = pvar;
pvar->name_ = &(vars_.find(name)->first);
auto *pvar = FindVarLocally(name);
if (pvar != nullptr) {
return pvar;
};
pvar = new Variable;
vars_[name] = pvar;
pvar->name_ = &(vars_.find(name)->first);
return pvar;
}
// Variable* Scope::Var(std::string* name) {
......@@ -33,70 +33,70 @@ Variable *Scope::Var(const std::string &name) {
// }
Variable *Scope::FindVar(const std::string &name) const {
auto *pvar = FindVarLocally(name);
if (pvar != nullptr) {
return pvar;
}
return (parent_ == nullptr) ? nullptr : parent_->FindVar(name);
auto *pvar = FindVarLocally(name);
if (pvar != nullptr) {
return pvar;
}
return (parent_ == nullptr) ? nullptr : parent_->FindVar(name);
}
const Scope *Scope::FindScope(const Variable *var) const {
for (auto &name_var : vars_) {
if (name_var.second == var) {
return this;
}
for (auto &name_var : vars_) {
if (name_var.second == var) {
return this;
}
return (parent_ == nullptr) ? nullptr : parent_->FindScope(var);
}
return (parent_ == nullptr) ? nullptr : parent_->FindScope(var);
}
void Scope::DropKids() {
for (Scope *s : kids_) {
delete s;
}
kids_.clear();
for (Scope *s : kids_) {
delete s;
}
kids_.clear();
}
std::vector<std::string> Scope::LocalVarNames() const {
std::vector<std::string> known_vars;
known_vars.reserve(vars_.size());
for (auto &name_var : vars_) {
known_vars.emplace_back(name_var.first);
}
return known_vars;
std::vector<std::string> known_vars;
known_vars.reserve(vars_.size());
for (auto &name_var : vars_) {
known_vars.emplace_back(name_var.first);
}
return known_vars;
}
void Scope::DeleteScope(Scope *scope) const {
std::unique_lock<std::mutex> lock(mutex_);
auto it = std::find(kids_.begin(), kids_.end(), scope);
kids_.erase(it);
delete scope;
// deferent
std::unique_lock<std::mutex> lock(mutex_);
auto it = std::find(kids_.begin(), kids_.end(), scope);
kids_.erase(it);
delete scope;
// deferent
}
void Scope::EraseVars(const std::vector<std::string> &var_names) {
std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) {
delete it->second;
it = vars_.erase(it);
} else {
++it;
}
std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) {
delete it->second;
it = vars_.erase(it);
} else {
++it;
}
}
}
void Scope::Rename(const std::string &origin_name,
const std::string &new_name) const {
auto origin_it = vars_.find(origin_name);
if (origin_it == vars_.end()) {
return;
}
auto new_it = vars_.find(new_name);
if (new_it != vars_.end()) {
return;
}
vars_[new_name] = origin_it->second;
vars_.erase(origin_it);
auto origin_it = vars_.find(origin_name);
if (origin_it == vars_.end()) {
return;
}
auto new_it = vars_.find(new_name);
if (new_it != vars_.end()) {
return;
}
vars_[new_name] = origin_it->second;
vars_.erase(origin_it);
}
//
// std::string Scope::Rename(const std::string& origin_name)
......@@ -108,11 +108,11 @@ void Scope::Rename(const std::string &origin_name,
// }
Variable *Scope::FindVarLocally(const std::string &name) const {
auto it = vars_.find(name);
if (it != vars_.end()) {
return it->second;
}
return nullptr;
auto it = vars_.find(name);
if (it != vars_.end()) {
return it->second;
}
return nullptr;
}
} // namespace framework
......
......@@ -26,56 +26,56 @@ SOFTWARE.
namespace paddle_mobile {
namespace framework {
class Scope {
public:
Scope() {}
~Scope() {}
public:
Scope() {}
~Scope() {}
Scope &NewScope() const;
Scope &NewScope() const;
/// Create a variable with given name if it doesn't exist.
Variable *Var(const std::string &name);
/// Create a variable with given name if it doesn't exist.
Variable *Var(const std::string &name);
/// Create a variable with a scope-unique name.
Variable *Var(std::string *name = nullptr);
/// Create a variable with a scope-unique name.
Variable *Var(std::string *name = nullptr);
void EraseVars(const std::vector<std::string> &var_names);
void EraseVars(const std::vector<std::string> &var_names);
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.
Variable *FindVar(const std::string &name) const;
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.
Variable *FindVar(const std::string &name) const;
const Scope *parent() const { return parent_; }
const Scope *parent() const { return parent_; }
/// Find the scope or an ancestor scope that contains the given
/// variable.
const Scope *FindScope(const Variable *var) const;
/// Find the scope or an ancestor scope that contains the given
/// variable.
const Scope *FindScope(const Variable *var) const;
void DeleteScope(Scope *scope) const;
void DeleteScope(Scope *scope) const;
/// Drop all kids scopes belonged to this scope.
void DropKids();
/// Drop all kids scopes belonged to this scope.
void DropKids();
// enumerate all the variables current contains.
std::vector<std::string> LocalVarNames() const;
// enumerate all the variables current contains.
std::vector<std::string> LocalVarNames() const;
// Rename variable to a new name
void Rename(const std::string &origin_name,
const std::string &new_name) const;
// Rename variable to a new name
void Rename(const std::string &origin_name,
const std::string &new_name) const;
// Rename variable to a new name and return the new name
std::string Rename(const std::string &origin_name) const;
// Rename variable to a new name and return the new name
std::string Rename(const std::string &origin_name) const;
Variable *FindVarLocally(const std::string &name) const;
Variable *FindVarLocally(const std::string &name) const;
private:
// Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const *parent) : parent_(parent) {}
private:
// Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const *parent) : parent_(parent) {}
mutable std::unordered_map<std::string, Variable *> vars_;
mutable std::list<Scope *> kids_;
Scope const *parent_{nullptr};
mutable std::unordered_map<std::string, Variable *> vars_;
mutable std::list<Scope *> kids_;
Scope const *parent_{nullptr};
mutable std::mutex mutex_;
mutable std::mutex mutex_;
};
} // namespace framework
} // namespace paddle_mobile
......@@ -27,54 +27,54 @@ namespace paddle_mobile {
namespace framework {
class SelectedRows {
public:
SelectedRows(const std::vector<int64_t> &rows, const int64_t &height)
: rows_(rows), height_(height) {
value_.reset(new Tensor());
}
SelectedRows() {
height_ = 0;
value_.reset(new Tensor());
}
const Tensor &value() const { return *value_; }
Tensor *mutable_value() { return value_.get(); }
int64_t height() const { return height_; }
void set_height(int64_t height) { height_ = height; }
const std::vector<int64_t> &rows() const { return rows_; }
std::vector<int64_t> *mutable_rows() { return &rows_; }
void set_rows(const std::vector<int64_t> &rows) { rows_ = rows; }
/**
* get the index of id in rows
*/
int64_t index(int64_t id) const {
auto it = std::find(rows_.begin(), rows_.end(), id);
// PADDLE_ENFORCE(it != rows_.end(), "id should be in rows");
return static_cast<int64_t>(std::distance(rows_.begin(), it));
}
DDim GetCompleteDims() const {
std::vector<int64_t> dims = vectorize(value_->dims());
dims[0] = height_;
return make_ddim(dims);
}
private:
// Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9}
// here.
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
std::vector<int64_t> rows_;
std::unique_ptr<Tensor> value_{nullptr};
int64_t height_;
public:
SelectedRows(const std::vector<int64_t> &rows, const int64_t &height)
: rows_(rows), height_(height) {
value_.reset(new Tensor());
}
SelectedRows() {
height_ = 0;
value_.reset(new Tensor());
}
const Tensor &value() const { return *value_; }
Tensor *mutable_value() { return value_.get(); }
int64_t height() const { return height_; }
void set_height(int64_t height) { height_ = height; }
const std::vector<int64_t> &rows() const { return rows_; }
std::vector<int64_t> *mutable_rows() { return &rows_; }
void set_rows(const std::vector<int64_t> &rows) { rows_ = rows; }
/**
* get the index of id in rows
*/
int64_t index(int64_t id) const {
auto it = std::find(rows_.begin(), rows_.end(), id);
// PADDLE_ENFORCE(it != rows_.end(), "id should be in rows");
return static_cast<int64_t>(std::distance(rows_.begin(), it));
}
DDim GetCompleteDims() const {
std::vector<int64_t> dims = vectorize(value_->dims());
dims[0] = height_;
return make_ddim(dims);
}
private:
// Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9}
// here.
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
std::vector<int64_t> rows_;
std::unique_ptr<Tensor> value_{nullptr};
int64_t height_;
};
} // namespace framework
......
......@@ -29,305 +29,304 @@ namespace framework {
template <typename... T> struct SizeOfTypeFunctor;
template <typename T> struct SizeOfTypeFunctor<T> {
size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T);
} else {
return 0UL;
}
size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T);
} else {
return 0UL;
}
}
};
template <> struct SizeOfTypeFunctor<> {
size_t operator()(std::type_index type) const { return 0UL; }
size_t operator()(std::type_index type) const { return 0UL; }
};
template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> {
size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type);
if (head_size != 0) {
return head_size;
}
SizeOfTypeFunctor<TAIL...> tail;
return tail(type);
size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type);
if (head_size != 0) {
return head_size;
}
SizeOfTypeFunctor<TAIL...> tail;
return tail(type);
}
};
static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool, size_t>
functor;
size_t size = functor(type);
// PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s",
// type.name());
return size;
SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool, size_t> functor;
size_t size = functor(type);
// PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s",
// type.name());
return size;
}
class LoDTensor;
class Tensor {
public:
Tensor() : offset_(0) {}
/*! Return a pointer to mutable memory block. */
template <typename T> inline T *data() {
check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() ==
// typeid(T).hash_code(),
// "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name());
return reinterpret_cast<T *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
public:
Tensor() : offset_(0) {}
/*! Return a pointer to mutable memory block. */
template <typename T> inline T *data() {
check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() ==
// typeid(T).hash_code(),
// "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name());
return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
}
/*! Return a pointer to constant memory block. */
template <typename T> inline const T *data() const {
check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() ==
// typeid(T).hash_code(),
// "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name());
return reinterpret_cast<const T *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
inline bool IsInitialized() const { return holder_ != nullptr; }
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T> inline T *mutable_data() {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T *>(mutable_data(typeid(T)));
}
inline void *mutable_data(std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
/*! Return a pointer to constant memory block. */
template <typename T> inline const T *data() const {
check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() ==
// typeid(T).hash_code(),
// "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name());
return reinterpret_cast<const T *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
// PADDLE_ENFORCE_GE(numel(), 0,
// "When calling this method, the Tensor's
// numel must be
// " "equal or larger than zero. " "Please
// check
// Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || holder_->size() < size + offset_) {
holder_.reset(new PlaceholderImpl(size, type));
offset_ = 0;
}
inline bool IsInitialized() const { return holder_ != nullptr; }
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T> inline T *mutable_data() {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T *>(mutable_data(typeid(T)));
return reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
inline void *mutable_data() {
// PADDLE_ENFORCE(this->holder_ != nullptr,
// "Cannot invoke mutable data if current hold
// nothing.");
return mutable_data(holder_->type());
}
/**
* @brief Return a pointer to mutable memory block.
*
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
*
* @note If not exist, then allocation.
*/
template <typename T> inline T *mutable_data(DDim dims) {
static_assert(std::is_pod<T>::value, "T must be POD");
Resize(dims);
return mutable_data<T>();
}
/*! Return the dimensions of the memory block. */
inline const DDim &dims() const { return dims_; }
/*! Return the numel of the memory block. */
inline int64_t numel() const { return product(dims_); }
/*! Resize the dimensions of the memory block. */
inline Tensor &Resize(const DDim &dims) {
dims_ = dims;
return *this;
}
/*! The internal of two tensors share the same memory block. */
inline Tensor &ShareDataWith(const Tensor &src) {
src.check_memory_size();
*this = src;
return *this;
}
/**
* @brief Return a sub-tensor of the given tensor.
*
* @param[in] begin_idx The index of the start row(inclusive) to
* slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to
* slice.
* The index number begins from 0.
*/
inline Tensor Slice(int begin_idx, int end_idx) const {
check_memory_size();
// PADDLE_ENFORCE_GE(begin_idx, 0,
// "The start row index must be greater than
// 0.");
// PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is
// out of
// bound."); PADDLE_ENFORCE_LT(
// begin_idx, end_idx,
// "The start row index must be lesser than the end row
// index.");
if (dims_[0] == 1) {
return *this;
} else {
size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
dst.set_layout(layout_);
DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims);
dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
return dst;
}
inline void *mutable_data(std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
// PADDLE_ENFORCE_GE(numel(), 0,
// "When calling this method, the Tensor's
// numel must be
// " "equal or larger than zero. " "Please
// check
// Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || holder_->size() < size + offset_) {
holder_.reset(new PlaceholderImpl(size, type));
offset_ = 0;
}
return reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
std::type_index type() const {
// PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor not initialized yet
// when
// Tensor::type() is called.");
return holder_->type();
}
// memory size returns the holding memory size in byte.
size_t memory_size() const {
return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}
inline void check_memory_size() const {
// PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor holds no memory. Call
// Tensor::mutable_data
// first.");
// PADDLE_ENFORCE_LE(
// numel() * SizeOfType(type()), memory_size(),
// "Tensor's dims_ is out of bound. Call
// Tensor::mutable_data "
// "first to re-allocate memory.\n"
// "or maybe the required data-type mismatches the data
// already
// stored.");
}
inline DataLayout layout() const { return layout_; }
inline void set_layout(const DataLayout layout) { layout_ = layout; }
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a
* template
* parameter of Variable.
*/
struct Placeholder {
virtual ~Placeholder() = default;
virtual void *ptr() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
virtual void set_type(std::type_index type) = 0;
};
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(size_t size, std::type_index type)
: ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
memory::PODDeleter<uint8_t>()),
size_(size), type_(type) {
// PADDLE_ENFORCE_NOT_NULL(ptr_,
// "Insufficient %s
// memory to allocation.",
// (is_cpu_place(place_)
// ?
// "CPU" :
// "GPU"));
}
inline void *mutable_data() {
// PADDLE_ENFORCE(this->holder_ != nullptr,
// "Cannot invoke mutable data if current hold
// nothing.");
return mutable_data(holder_->type());
}
virtual size_t size() const { return size_; }
/**
* @brief Return a pointer to mutable memory block.
*
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
*
* @note If not exist, then allocation.
*/
template <typename T> inline T *mutable_data(DDim dims) {
static_assert(std::is_pod<T>::value, "T must be POD");
Resize(dims);
return mutable_data<T>();
}
virtual void *ptr() const { return static_cast<void *>(ptr_.get()); }
/*! Return the dimensions of the memory block. */
inline const DDim &dims() const { return dims_; }
virtual std::type_index type() const { return type_; }
/*! Return the numel of the memory block. */
inline int64_t numel() const { return product(dims_); }
virtual void set_type(std::type_index type) { type_ = type; }
/*! Resize the dimensions of the memory block. */
inline Tensor &Resize(const DDim &dims) {
dims_ = dims;
return *this;
}
/*! the pointer of memory block. */
std::unique_ptr<uint8_t, memory::PODDeleter<uint8_t>> ptr_;
/*! The internal of two tensors share the same memory block. */
inline Tensor &ShareDataWith(const Tensor &src) {
src.check_memory_size();
*this = src;
return *this;
}
/*! the size of memory block. */
size_t size_;
/**
* @brief Return a sub-tensor of the given tensor.
*
* @param[in] begin_idx The index of the start row(inclusive) to
* slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to
* slice.
* The index number begins from 0.
*/
inline Tensor Slice(int begin_idx, int end_idx) const {
check_memory_size();
// PADDLE_ENFORCE_GE(begin_idx, 0,
// "The start row index must be greater than
// 0.");
// PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is
// out of
// bound."); PADDLE_ENFORCE_LT(
// begin_idx, end_idx,
// "The start row index must be lesser than the end row
// index.");
if (dims_[0] == 1) {
return *this;
} else {
size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
dst.set_layout(layout_);
DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims);
dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
return dst;
}
}
/* the current type of memory */
std::type_index type_;
};
std::type_index type() const {
// PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor not initialized yet
// when
// Tensor::type() is called.");
return holder_->type();
}
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
// memory size returns the holding memory size in byte.
size_t memory_size() const {
return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}
/**
* @brief points to elements dimensions.
*
* @note dims_ do not indicate the memory block size.
*/
inline void check_memory_size() const {
// PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor holds no memory. Call
// Tensor::mutable_data
// first.");
// PADDLE_ENFORCE_LE(
// numel() * SizeOfType(type()), memory_size(),
// "Tensor's dims_ is out of bound. Call
// Tensor::mutable_data "
// "first to re-allocate memory.\n"
// "or maybe the required data-type mismatches the data
// already
// stored.");
}
DDim dims_;
/**
* @brief the layout of memory block, default is NHWC.
*
* @note the memory allocation order, describe how weight/data is
* stored
* For example, in 4-D Tensor(rank=4), there are three
* commonly
* used layout. They are
* NCHW, NHWC, CHWN.
* N,C,H,W for respectively the batch size, the number of
* feature maps, the height, the width.
*/
DataLayout layout_ = DataLayout::kNHWC;
inline DataLayout layout() const { return layout_; }
inline void set_layout(const DataLayout layout) { layout_ = layout; }
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a
* template
* parameter of Variable.
*/
struct Placeholder {
virtual ~Placeholder() = default;
virtual void *ptr() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
virtual void set_type(std::type_index type) = 0;
};
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(size_t size, std::type_index type)
: ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
memory::PODDeleter<uint8_t>()),
size_(size), type_(type) {
// PADDLE_ENFORCE_NOT_NULL(ptr_,
// "Insufficient %s
// memory to allocation.",
// (is_cpu_place(place_)
// ?
// "CPU" :
// "GPU"));
}
virtual size_t size() const { return size_; }
virtual void *ptr() const { return static_cast<void *>(ptr_.get()); }
virtual std::type_index type() const { return type_; }
virtual void set_type(std::type_index type) { type_ = type; }
/*! the pointer of memory block. */
std::unique_ptr<uint8_t, memory::PODDeleter<uint8_t>> ptr_;
/*! the size of memory block. */
size_t size_;
/* the current type of memory */
std::type_index type_;
};
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
/**
* @brief points to elements dimensions.
*
* @note dims_ do not indicate the memory block size.
*/
DDim dims_;
/**
* @brief the layout of memory block, default is NHWC.
*
* @note the memory allocation order, describe how weight/data is
* stored
* For example, in 4-D Tensor(rank=4), there are three
* commonly
* used layout. They are
* NCHW, NHWC, CHWN.
* N,C,H,W for respectively the batch size, the number of
* feature maps, the height, the width.
*/
DataLayout layout_ = DataLayout::kNHWC;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
* @note Some of them may be slices of the others. So the offset_
* is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really
* begins.
*/
size_t offset_;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
* @note Some of them may be slices of the others. So the offset_
* is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really
* begins.
*/
size_t offset_;
};
inline Tensor ReshapeToMatrix(const Tensor &src, int num_col_dims) {
Tensor res;
res.ShareDataWith(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
return res;
Tensor res;
res.ShareDataWith(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
return res;
}
} // namespace framework
......
此差异已折叠。
......@@ -43,23 +43,23 @@ void TensorFromStream(std::istream &is, Tensor *tensor);
template <typename T>
void TensorFromVector(const std::vector<T> &src, Tensor *dst) {
auto src_ptr = static_cast<const void *>(src.data());
dst->Resize({static_cast<int64_t>(src.size())});
auto dst_ptr = static_cast<void *>(dst->mutable_data<T>());
auto size = src.size() * sizeof(T);
auto src_ptr = static_cast<const void *>(src.data());
dst->Resize({static_cast<int64_t>(src.size())});
auto dst_ptr = static_cast<void *>(dst->mutable_data<T>());
auto size = src.size() * sizeof(T);
memory::Copy(dst_ptr, src_ptr, size);
memory::Copy(dst_ptr, src_ptr, size);
}
template <typename T>
void TensorToVector(const Tensor &src, std::vector<T> *dst) {
auto src_ptr = static_cast<const void *>(src.data<T>());
auto size = src.numel() * sizeof(T);
auto src_ptr = static_cast<const void *>(src.data<T>());
auto size = src.numel() * sizeof(T);
dst->resize(src.numel());
auto dst_ptr = static_cast<void *>(dst->data());
dst->resize(src.numel());
auto dst_ptr = static_cast<void *>(dst->data());
memory::Copy(dst_ptr, src_ptr, size);
memory::Copy(dst_ptr, src_ptr, size);
}
} // namespace framework
......
......@@ -25,63 +25,63 @@ namespace paddle_mobile {
namespace framework {
class VarDesc {
public:
VarDesc(const proto::VarDesc &desc);
public:
VarDesc(const proto::VarDesc &desc);
std::string Name() const { return desc_.name(); }
std::string Name() const { return desc_.name(); }
proto::VarType::Type GetType() const { return desc_.type().type(); }
proto::VarType::Type GetType() const { return desc_.type().type(); }
bool Persistable() const { return desc_.persistable(); }
bool Persistable() const { return desc_.persistable(); }
const proto::VarType::ChannelDesc &channel_desc() const {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return desc_.type().channel();
default:
break;
}
const proto::VarType::ChannelDesc &channel_desc() const {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return desc_.type().channel();
default:
break;
}
}
const proto::VarType::TensorDesc &tensor_desc() const {
switch (desc_.type().type()) {
case proto::VarType::SELECTED_ROWS:
return desc_.type().selected_rows();
case proto::VarType::LOD_TENSOR:
return desc_.type().lod_tensor().tensor();
case proto::VarType::LOD_TENSOR_ARRAY:
return desc_.type().tensor_array().tensor();
default:
break;
}
const proto::VarType::TensorDesc &tensor_desc() const {
switch (desc_.type().type()) {
case proto::VarType::SELECTED_ROWS:
return desc_.type().selected_rows();
case proto::VarType::LOD_TENSOR:
return desc_.type().lod_tensor().tensor();
case proto::VarType::LOD_TENSOR_ARRAY:
return desc_.type().tensor_array().tensor();
default:
break;
}
}
proto::VarType::Type GetDataType() const {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return channel_desc().data_type();
break;
default:
return tensor_desc().data_type();
}
proto::VarType::Type GetDataType() const {
switch (desc_.type().type()) {
case proto::VarType::CHANNEL:
return channel_desc().data_type();
break;
default:
return tensor_desc().data_type();
}
}
template <typename T>
std::vector<T> RepeatedToVector(
const google::protobuf::RepeatedField<T> &repeated_field) const {
std::vector<T> ret;
ret.reserve(repeated_field.size());
std::copy(repeated_field.begin(), repeated_field.end(),
std::back_inserter(ret));
return ret;
}
template <typename T>
std::vector<T> RepeatedToVector(
const google::protobuf::RepeatedField<T> &repeated_field) const {
std::vector<T> ret;
ret.reserve(repeated_field.size());
std::copy(repeated_field.begin(), repeated_field.end(),
std::back_inserter(ret));
return ret;
}
std::vector<int64_t> GetShape() const {
return this->RepeatedToVector(tensor_desc().dims());
}
std::vector<int64_t> GetShape() const {
return this->RepeatedToVector(tensor_desc().dims());
}
private:
proto::VarDesc desc_;
private:
proto::VarDesc desc_;
};
} // namespace framework
......
......@@ -25,14 +25,14 @@ SOFTWARE.
namespace paddle_mobile {
namespace framework {
inline proto::VarType::Type ToVarType(std::type_index type) {
if (type.hash_code() == typeid(LoDTensor).hash_code()) {
return proto::VarType_Type_LOD_TENSOR;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return proto::VarType_Type_SELECTED_ROWS;
} else {
// PADDLE_THROW("ToVarType:Unsupported type %s",
// type.name());
}
if (type.hash_code() == typeid(LoDTensor).hash_code()) {
return proto::VarType_Type_LOD_TENSOR;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return proto::VarType_Type_SELECTED_ROWS;
} else {
// PADDLE_THROW("ToVarType:Unsupported type %s",
// type.name());
}
}
} // namespace framework
......
此差异已折叠。
此差异已折叠。
......@@ -29,11 +29,11 @@ namespace paddle_mobile {
template <typename Dtype, Precision P = Precision::FP32>
class Loader : PaddleMobileObject {
public:
const framework::Program<Dtype, P> Load(const std::string &dirname);
public:
const framework::Program<Dtype, P> Load(const std::string &dirname);
private:
void LoadVar(framework::LoDTensor *tensor, const std::string &file_path);
private:
void LoadVar(framework::LoDTensor *tensor, const std::string &file_path);
};
} // namespace paddle_mobile
......@@ -26,25 +26,25 @@ namespace memory {
const int MALLOC_ALIGN = 16;
void Copy(void *dst, const void *src, size_t num) {
std::memcpy(dst, src, num);
std::memcpy(dst, src, num);
};
void *Alloc(size_t size) {
size_t offset = sizeof(void *) + MALLOC_ALIGN - 1;
char *p = static_cast<char *>(malloc(offset + size));
if (!p) {
return nullptr;
}
void *r = reinterpret_cast<void *>(reinterpret_cast<size_t>(p + offset) &
(~(MALLOC_ALIGN - 1)));
static_cast<void **>(r)[-1] = p;
return r;
size_t offset = sizeof(void *) + MALLOC_ALIGN - 1;
char *p = static_cast<char *>(malloc(offset + size));
if (!p) {
return nullptr;
}
void *r = reinterpret_cast<void *>(reinterpret_cast<size_t>(p + offset) &
(~(MALLOC_ALIGN - 1)));
static_cast<void **>(r)[-1] = p;
return r;
}
void Free(void *ptr) {
if (ptr) {
free(static_cast<void **>(ptr)[-1]);
}
if (ptr) {
free(static_cast<void **>(ptr)[-1]);
}
}
} // namespace memory
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册