Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
dc2c0c01
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dc2c0c01
编写于
12月 03, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert int8 gemm
上级
ad5087c9
变更
8
展开全部
隐藏空白更改
内联
并排
Showing
8 changed file
with
145 addition
and
1096 deletion
+145
-1096
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+1
-7
src/operators/kernel/central-arm-func/mul_arm_func.h
src/operators/kernel/central-arm-func/mul_arm_func.h
+2
-2
src/operators/math/gemm.h
src/operators/math/gemm.h
+26
-34
src/operators/math/gemm_int8.cpp
src/operators/math/gemm_int8.cpp
+63
-710
src/operators/math/gemm_omp_int8.cpp
src/operators/math/gemm_omp_int8.cpp
+26
-263
src/operators/math/math_function.h
src/operators/math/math_function.h
+1
-6
src/operators/math/math_function_int8.cpp
src/operators/math/math_function_int8.cpp
+15
-38
test/common/test_gemm_perf.cpp
test/common/test_gemm_perf.cpp
+11
-36
未找到文件。
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
dc2c0c01
...
...
@@ -107,15 +107,9 @@ inline void GemmConv(const ConvParam<CPU> ¶m) {
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
if
(
param
.
Input
()
->
type
()
==
typeid
(
int8_t
))
{
math
::
matmul_int8
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
Itype
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
else
{
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
}
}
...
...
src/operators/kernel/central-arm-func/mul_arm_func.h
浏览文件 @
dc2c0c01
...
...
@@ -73,8 +73,8 @@ void MulCompute(const MulParam<CPU> ¶m) {
}
if
(
param
.
InputX
()
->
type
()
==
typeid
(
int8_t
))
{
out
->
mutable_data
<
int32_t
>
();
math
::
matmul
_int8
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
float
>
(
1
)
,
out
,
static_cast
<
floa
t
>
(
0
));
math
::
matmul
<
int8_t
>
(
x_matrix
,
false
,
y_matrix
,
false
,
static_cast
<
int8_t
>
(
1
),
out
,
static_cast
<
int8_
t
>
(
0
));
}
else
{
out
->
mutable_data
<
float
>
();
...
...
src/operators/math/gemm.h
浏览文件 @
dc2c0c01
...
...
@@ -23,12 +23,10 @@ limitations under the License. */
#if __aarch64__
#define MR_INT8 4
#define NR_INT8 2
#define MR 6
#define NR 16
#else
#define MR_INT8 4
#define NR_INT8 2
#define MR 6
#define NR 8
#endif
...
...
@@ -195,58 +193,52 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 8 bits int small block inner product
void
AddDot4x8
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
void
AddDot4x2
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
void
AddDot6x8
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
// 8 bits int inner product
void
InnerKernel
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
);
void
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
int8_t
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int8_t
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
// 8 bits int pack function
void
PackMatrixA_4r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixA_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixA_6r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_2c_16
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
void
PackMatrixB_8c
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
void
PackMatrixA_omp_4r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_omp_8c
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
void
PackMatrixA_omp_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_omp_2c_16
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
// 8 bits int matrix product
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int8_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
float
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
float
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int32_t
*
bias
);
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
void
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
// 8 bits int write back
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B
void
WriteBasic
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias, scale * relu(C)
void
WriteWithAddReluScale
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
int32_t
*
bias
,
float
scale
);
// C = A * B + bias, scale * C
void
WriteWithAddScale
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int8_t
*
C
,
int32_t
ldc
,
int32_t
*
bias
,
float
scale
);
// C = A * B + C
void
WriteWithAdd
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias
void
WriteWithAddV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias, relu(C)
void
WriteWithAddReluV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
);
private:
int
MC
=
0
;
...
...
@@ -262,7 +254,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 8 bits int
int8_t
*
packedA_int8
;
int8_t
*
packedB_int8
;
int32_t
*
packedC_int
32
;
int32_t
*
packedC_int
8
;
int8_t
*
zero_int8
;
};
...
...
src/operators/math/gemm_int8.cpp
浏览文件 @
dc2c0c01
此差异已折叠。
点击以展开。
src/operators/math/gemm_omp_int8.cpp
浏览文件 @
dc2c0c01
...
...
@@ -28,10 +28,10 @@ namespace operators {
namespace
math
{
// 8 bits int matrix product (m*k x k*n)
void
Gemm
::
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
floa
t
alpha
,
void
Gemm
::
Sgemm_omp
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_
t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
floa
t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int
32
_t
*
bias
)
{
int8_
t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int
8
_t
*
bias
)
{
#ifdef _OPENMP
int32_t
max_threads
=
omp_get_max_threads
();
#else
...
...
@@ -39,11 +39,10 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
#endif
int32_t
L1
=
64
/
max_threads
*
1024
;
const
int32_t
k_complete
=
(
k
+
15
)
-
((
k
+
15
)
&
15
);
KC
=
k_complete
;
KC
=
k
;
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
k
);
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
KC
);
if
(
m
>
n
)
{
// 对 A 分块
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
...
...
@@ -55,14 +54,14 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
MC
=
(
MC
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
}
// 补齐 B
NC
=
(
n
+
NR
_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
NC
=
(
n
+
NR
-
1
)
/
NR
*
NR
;
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_omp_
2c_16
(
k
,
n
,
n
%
NR_INT8
,
B
,
ldb
,
packedB_int8
);
PackMatrixB_omp_
8c
(
KC
,
n
,
n
%
NR
,
B
,
ldb
,
packedB_int8
);
#endif
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
*
max_threads
));
...
...
@@ -70,11 +69,11 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
// 对 B 分块
NC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
if
(
NC
==
0
)
{
NC
=
NR
_INT8
;
NC
=
NR
;
}
else
{
int32_t
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
_INT8
-
1
)
/
NR_INT8
*
NR_INT8
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
}
// 补齐 A
MC
=
(
m
+
MR_INT8
-
1
)
/
MR_INT8
*
MR_INT8
;
...
...
@@ -84,12 +83,12 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_omp_4r
_16
(
m
,
k
,
m
%
MR_INT8
,
A
,
lda
,
packedA_int8
);
PackMatrixA_omp_4r
(
m
,
KC
,
m
%
MR_INT8
,
A
,
lda
,
packedA_int8
);
#endif
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
*
max_threads
));
}
packedC_int
32
=
static_cast
<
int32_t
*>
(
packedC_int
8
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
MC
*
NC
*
max_threads
));
if
(
m
>
n
)
{
...
...
@@ -104,19 +103,14 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
int32_t
mc
;
mc
=
s_min
(
m
-
i
,
MC
);
int8_t
*
local_A
=
packedA_int8
+
MC
*
KC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
32
+
MC
*
NC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
8
+
MC
*
NC
*
local_threads
;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_4r
_16
(
mc
,
k
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
local_A
);
PackMatrixA_4r
(
mc
,
KC
,
mc
%
MR_INT8
,
&
A
(
i
,
0
),
lda
,
local_A
);
#endif
// InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta,
// local_C,
// &C(i, 0), ldc, relu, bias + i);
if
(
bias
==
nullptr
)
{
InnerKernel
(
mc
,
n
,
alpha
,
local_A
,
packedB_int8
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
);
}
InnerKernelWithBias
(
mc
,
n
,
alpha
,
local_A
,
packedB_int8
,
beta
,
local_C
,
&
C
(
i
,
0
),
ldc
,
relu
,
bias
+
i
);
}
}
else
{
#pragma omp parallel for
...
...
@@ -129,25 +123,20 @@ void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
int32_t
nc
;
nc
=
s_min
(
n
-
j
,
NC
);
int8_t
*
local_B
=
packedB_int8
+
KC
*
NC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
32
+
MC
*
NC
*
local_threads
;
int32_t
*
local_C
=
packedC_int
8
+
MC
*
NC
*
local_threads
;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_
2c_16
(
k
,
nc
,
nc
%
NR_INT8
,
&
B
(
0
,
j
),
ldb
,
local_B
);
PackMatrixB_
8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
local_B
);
#endif
// InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta,
// local_C,
// &C(0, j), ldc, relu, bias);
if
(
bias
==
nullptr
)
{
InnerKernel
(
m
,
nc
,
alpha
,
packedA_int8
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
);
}
InnerKernelWithBias
(
m
,
nc
,
alpha
,
packedA_int8
,
local_B
,
beta
,
local_C
,
&
C
(
0
,
j
),
ldc
,
relu
,
bias
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int
32
);
paddle_mobile
::
memory
::
Free
(
packedC_int
8
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
...
...
@@ -155,7 +144,7 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
)
{
const
int32_t
j_length
=
n
-
n_tail
;
#pragma omp parallel for
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
8
)
{
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
NR
)
{
int8_t
*
local_buffer
=
buffer
+
j
*
k
;
for
(
int32_t
i
=
0
;
i
<
k
;
++
i
)
{
const
int8_t
*
b0
=
&
B
(
i
,
j
);
...
...
@@ -190,7 +179,7 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
for
(
int32_t
j
=
j_length
;
j
<
n
;
++
j
)
{
*
local_buffer
++
=
*
b0
++
;
}
for
(
int32_t
j
=
n
;
j
<
j_length
+
8
;
++
j
)
{
for
(
int32_t
j
=
n
;
j
<
j_length
+
NR
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
...
...
@@ -199,9 +188,9 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
void
Gemm
::
PackMatrixA_omp_4r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
)
{
const
int
32_t
i_length
=
m
-
m_tail
;
const
int
i_length
=
m
-
m_tail
;
#pragma omp parallel for
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
4
)
{
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
MR_INT8
)
{
const
int8_t
*
a0
=
A
+
i
*
lda
;
const
int8_t
*
a1
=
A
+
(
i
+
1
)
*
lda
;
const
int8_t
*
a2
=
A
+
(
i
+
2
)
*
lda
;
...
...
@@ -232,7 +221,7 @@ void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
default:
break
;
}
for
(
int
32_t
j
=
0
;
j
<
k
;
++
j
)
{
for
(
int
j
=
0
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
*
local_buffer
++
=
*
a1
++
;
*
local_buffer
++
=
*
a2
++
;
...
...
@@ -241,232 +230,6 @@ void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
}
}
// 8 bits int PackMatrixA_4r
void
Gemm
::
PackMatrixA_omp_4r_16
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
)
{
const
int32_t
i_length
=
m
-
m_tail
;
const
int32_t
k_count
=
k
>>
4
;
const
int32_t
k_tail
=
k
&
15
;
#pragma omp parallel for
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
4
)
{
const
int8_t
*
a0
=
A
+
i
*
lda
;
const
int8_t
*
a1
=
A
+
(
i
+
1
)
*
lda
;
const
int8_t
*
a2
=
A
+
(
i
+
2
)
*
lda
;
const
int8_t
*
a3
=
A
+
(
i
+
3
)
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i
*
KC
;
for
(
int32_t
j
=
0
;
j
<
k_count
;
++
j
)
{
#if __ARM_NEON
#if __aarch64__
// TODO(wzzju)
#else
asm
volatile
(
"vld1.s8 {d0, d1}, [%[a0]]!
\n\t
"
"vld1.s8 {d2, d3}, [%[a1]]!
\n\t
"
"vld1.s8 {d4, d5}, [%[a2]]!
\n\t
"
"vld1.s8 {d6, d7}, [%[a3]]!
\n\t
"
"vst1.s8 {d0, d1}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d2, d3}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d4, d5}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d6, d7}, [%[local_buffer]]!
\n\t
"
:
[
local_buffer
]
"+r"
(
local_buffer
),
[
a0
]
"+r"
(
a0
),
[
a1
]
"+r"
(
a1
),
[
a2
]
"+r"
(
a2
),
[
a3
]
"+r"
(
a3
)
:
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
#endif // __aarch64__
#else
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a3
++
;
}
#endif // __ARM_NEON
}
if
(
k_tail
!=
0
)
{
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a3
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
if
(
m_tail
!=
0
)
{
const
int8_t
*
a0
=
&
A
(
i_length
,
0
);
const
int8_t
*
a1
=
a0
+
lda
;
const
int8_t
*
a2
=
a0
+
2
*
lda
;
const
int8_t
*
a3
=
a0
+
3
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i_length
*
KC
;
switch
(
m_tail
)
{
case
1
:
a1
=
zero_int8
;
case
2
:
a2
=
zero_int8
;
case
3
:
a3
=
zero_int8
;
break
;
default:
break
;
}
for
(
int32_t
j
=
0
;
j
<
k_count
;
++
j
)
{
#if __ARM_NEON
#if __aarch64__
// TODO(wzzju)
#else
asm
volatile
(
"vld1.s8 {d0, d1}, [%[a0]]!
\n\t
"
"vld1.s8 {d2, d3}, [%[a1]]!
\n\t
"
"vld1.s8 {d4, d5}, [%[a2]]!
\n\t
"
"vld1.s8 {d6, d7}, [%[a3]]!
\n\t
"
"vst1.s8 {d0, d1}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d2, d3}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d4, d5}, [%[local_buffer]]!
\n\t
"
"vst1.s8 {d6, d7}, [%[local_buffer]]!
\n\t
"
:
[
local_buffer
]
"+r"
(
local_buffer
),
[
a0
]
"+r"
(
a0
),
[
a1
]
"+r"
(
a1
),
[
a2
]
"+r"
(
a2
),
[
a3
]
"+r"
(
a3
)
:
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
#endif // __aarch64__
#else
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
l
=
0
;
l
<
16
;
++
l
)
{
*
local_buffer
++
=
*
a3
++
;
}
#endif // __ARM_NEON
}
if
(
k_tail
!=
0
)
{
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a1
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a2
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a3
++
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
}
// 8 bits int PackMatrixB
void
Gemm
::
PackMatrixB_omp_2c_16
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
)
{
const
int32_t
j_length
=
n
-
n_tail
;
const
int32_t
k_count
=
k
>>
4
;
const
int32_t
k_tail
=
k
&
15
;
#pragma omp parallel for
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
2
)
{
int8_t
*
local_buffer
=
buffer
+
j
*
KC
;
for
(
int32_t
i
=
0
;
i
<
k_count
;
++
i
)
{
const
int8_t
*
b0
=
&
B
((
i
<<
4
),
j
);
const
int8_t
*
b1
=
&
B
((
i
<<
4
),
j
+
1
);
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
*
b1
;
b1
+=
ldb
;
}
}
if
(
k_tail
!=
0
)
{
const
int8_t
*
b0
=
&
B
((
k_count
<<
4
),
j
);
const
int8_t
*
b1
=
&
B
((
k_count
<<
4
),
j
+
1
);
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
b1
;
b1
+=
ldb
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
if
(
n_tail
!=
0
)
{
int8_t
*
local_buffer
=
buffer
+
j_length
*
KC
;
for
(
int32_t
i
=
0
;
i
<
k_count
;
++
i
)
{
const
int8_t
*
b0
=
&
B
((
i
<<
4
),
j_length
);
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int
m
=
0
;
m
<
16
;
++
m
)
{
*
local_buffer
++
=
0
;
}
}
if
(
k_tail
!=
0
)
{
const
int8_t
*
b0
=
&
B
((
k_count
<<
4
),
j_length
);
for
(
int32_t
j
=
k_count
<<
4
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
b0
;
b0
+=
ldb
;
}
for
(
int32_t
j
=
k
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
for
(
int32_t
j
=
k_count
<<
4
;
j
<
KC
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/math_function.h
浏览文件 @
dc2c0c01
...
...
@@ -28,12 +28,7 @@ template <typename T>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
,
float
*
bias
=
nullptr
);
void
matmul_int8
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
=
false
,
int32_t
*
bias
=
nullptr
);
T
*
bias
=
nullptr
);
template
<
typename
T
>
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
src/operators/math/math_function_int8.cpp
浏览文件 @
dc2c0c01
...
...
@@ -20,10 +20,11 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
void
matmul_int8
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
,
int32_t
*
bias
)
{
template
<
>
void
matmul
<
int8_t
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
int8_t
alpha
,
framework
::
Tensor
*
matrix_out
,
int8_t
beta
,
bool
relu
,
int8_t
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
...
@@ -51,45 +52,21 @@ void matmul_int8(const framework::Tensor &matrix_a, bool trans_a,
}
#ifdef _OPENMP
if
(
bias
!=
nullptr
)
{
// TODO(wzzju): gemm.Sgemm_omp_with_bias, now use single thread instead.
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#else
if
(
bias
!=
nullptr
)
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#endif
}
else
{
#ifdef _OPENMP
if
(
bias
!=
nullptr
)
{
// TODO(wzzju): gemm.Sgemm_omp_with_bias, now use single thread instead.
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#else
if
(
bias
!=
nullptr
)
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int8_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
#endif
}
}
...
...
test/common/test_gemm_perf.cpp
浏览文件 @
dc2c0c01
...
...
@@ -28,7 +28,7 @@ limitations under the License. */
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
>
paddle_mobile
;
paddle_mobile
.
SetThreadNum
(
4
);
paddle_mobile
.
SetThreadNum
(
8
);
Tensor
aa
,
bb
,
cc
;
auto
aaptr
=
aa
.
mutable_data
<
float
>
({
m
,
k
});
auto
bbptr
=
bb
.
mutable_data
<
float
>
({
k
,
n
});
...
...
@@ -44,12 +44,10 @@ int main() {
ccptr
[
i
]
=
2
;
}
Tensor
aa_int8
,
bb_int8
,
cc_int
32
,
cc_int
8
;
Tensor
aa_int8
,
bb_int8
,
cc_int8
;
auto
aaptr_int8
=
aa_int8
.
mutable_data
<
int8_t
>
({
m
,
k
});
auto
bbptr_int8
=
bb_int8
.
mutable_data
<
int8_t
>
({
k
,
n
});
auto
ccptr_int32
=
cc_int32
.
mutable_data
<
int32_t
>
({
m
,
n
});
auto
ccptr_int8
=
cc_int8
.
mutable_data
<
int8_t
>
({
m
,
n
});
int32_t
*
bias_data
=
new
int32_t
[
m
];
auto
ccptr_int8
=
cc_int8
.
mutable_data
<
int32_t
>
({
m
,
n
});
for
(
int
i
=
0
;
i
<
m
*
k
;
++
i
)
{
aaptr_int8
[
i
]
=
static_cast
<
int8_t
>
(
2
);
...
...
@@ -58,11 +56,7 @@ int main() {
bbptr_int8
[
i
]
=
static_cast
<
int8_t
>
(
2
);
}
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
ccptr_int32
[
i
]
=
static_cast
<
int32_t
>
(
2
);
}
for
(
int
i
=
0
;
i
<
m
;
++
i
)
{
bias_data
[
i
]
=
2
;
ccptr_int8
[
i
]
=
static_cast
<
int32_t
>
(
2
);
}
// float
...
...
@@ -82,41 +76,22 @@ int main() {
auto
time2
=
time
();
std
::
cout
<<
"float gemm cost :"
<<
time_diff
(
time1
,
time2
)
/
10
<<
"ms
\n
"
;
// int8_t
without bias
// int8_t
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int32
,
static_cast
<
floa
t
>
(
0
),
false
,
nullptr
);
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
int8_t
>
(
1
),
&
cc_int8
,
static_cast
<
int8_
t
>
(
0
),
false
,
nullptr
);
}
auto
time3
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int32
,
static_cast
<
floa
t
>
(
0
),
false
,
nullptr
);
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
int8_t
>
(
1
),
&
cc_int8
,
static_cast
<
int8_
t
>
(
0
),
false
,
nullptr
);
}
auto
time4
=
time
();
std
::
cout
<<
"int8_t gemm cost :"
<<
time_diff
(
time3
,
time4
)
/
10
<<
"ms
\n
"
;
// int8_t with bias&relu
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
true
,
&
bias_data
[
0
]);
}
auto
time5
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul_int8
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
float
>
(
1
),
&
cc_int8
,
static_cast
<
float
>
(
0
),
true
,
&
bias_data
[
0
]);
}
auto
time6
=
time
();
std
::
cout
<<
"int8_t gemm_with_bias_relu cost :"
<<
time_diff
(
time5
,
time6
)
/
10
<<
"ms
\n
"
;
delete
[]
bias_data
;
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录