未验证 提交 dacb2938 编写于 作者: R Ruilong Liu 提交者: GitHub

Merge pull request #431 from codeWorm2015/develop

fix #430 fix bus error
......@@ -7,7 +7,7 @@ option(USE_EXCEPTION "use std exception" ON)
option(LOG_PROFILE "log profile" ON)
# select the platform to build
option(CPU "cpu" ON)
option(MALI_GPU "mali gpu" OFF)
option(MALI_GPU "mali gpu" ON)
option(FPGA "fpga" OFF)
if (CPU)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "common/types.h"
#include <vector>
namespace paddle_mobile {
const std::string G_OP_TYPE_CONV = "conv2d";
const std::string G_OP_TYPE_BATCHNORM = "batch_norm";
const std::string G_OP_TYPE_BOX_CODER = "box_coder";
const std::string G_OP_TYPE_CONCAT = "concat";
const std::string G_OP_TYPE_ELEMENTWISE_ADD = "elementwise_add";
const std::string G_OP_TYPE_FUSION_CONV_ADD_RELU = "fusion_conv_add_relu";
const std::string G_OP_TYPE_FC = "fc";
const std::string G_OP_TYPE_CONV_ADD = "conv_add";
const std::string G_OP_TYPE_LRN = "lrn";
const std::string G_OP_TYPE_MUL = "mul";
const std::string G_OP_TYPE_MULTICLASS_NMS = "multiclass_nms";
const std::string G_OP_TYPE_POOL2D = "pool2d";
const std::string G_OP_TYPE_PRIOR_BOX = "prior_box";
const std::string G_OP_TYPE_RELU = "relu";
const std::string G_OP_TYPE_RESHAPE = "reshape";
const std::string G_OP_TYPE_SIGMOID = "sigmoid";
const std::string G_OP_TYPE_SOFTMAX = "softmax";
const std::string G_OP_TYPE_TRANSPOSE = "transpose";
const std::string G_OP_TYPE_SPLIT = "split";
const std::string G_OP_TYPE_FEED = "feed";
const std::string G_OP_TYPE_FETCH = "fetch";
const std::string G_OP_TYPE_DEPTHWISE_CONV = "depthwise_conv2d";
std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
op_input_output_key = {
{G_OP_TYPE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_CONV_ADD, {{"Input"}, {"Out"}}},
{G_OP_TYPE_RELU, {{"X"}, {"Out"}}},
{G_OP_TYPE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_MUL, {{"X"}, {"Out"}}},
{G_OP_TYPE_ELEMENTWISE_ADD, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_POOL2D, {{"X"}, {"Out"}}},
{G_OP_TYPE_BATCHNORM, {{"X"}, {"Y"}}},
{G_OP_TYPE_LRN, {{"X"}, {"Out"}}},
{G_OP_TYPE_CONCAT, {{"X"}, {"Out"}}},
{G_OP_TYPE_SPLIT, {{"X"}, {"Out"}}},
{G_OP_TYPE_FEED, {{"X"}, {"Out"}}},
{G_OP_TYPE_FETCH, {{"X"}, {"Out"}}},
{G_OP_TYPE_TRANSPOSE, {{"X"}, {"Out"}}},
{G_OP_TYPE_BOX_CODER,
{{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
{G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}},
{G_OP_TYPE_DEPTHWISE_CONV, {{"Input"}, {"Output"}}}};
} // namespace paddle_mobile
......@@ -71,52 +71,31 @@ enum PMStatus {
PMWrongDevice = 0x08 /*!< un-correct device. */
};
static const std::string G_OP_TYPE_CONV = "conv2d";
static const std::string G_OP_TYPE_BATCHNORM = "batch_norm";
static const std::string G_OP_TYPE_BOX_CODER = "box_coder";
static const std::string G_OP_TYPE_CONCAT = "concat";
static const std::string G_OP_TYPE_ELEMENTWISE_ADD = "elementwise_add";
static const std::string G_OP_TYPE_FUSION_CONV_ADD_RELU =
"fusion_conv_add_relu";
static const std::string G_OP_TYPE_FC = "fc";
static const std::string G_OP_TYPE_CONV_ADD = "conv_add";
static const std::string G_OP_TYPE_LRN = "lrn";
static const std::string G_OP_TYPE_MUL = "mul";
static const std::string G_OP_TYPE_MULTICLASS_NMS = "multiclass_nms";
static const std::string G_OP_TYPE_POOL2D = "pool2d";
static const std::string G_OP_TYPE_PRIOR_BOX = "prior_box";
static const std::string G_OP_TYPE_RELU = "relu";
static const std::string G_OP_TYPE_RESHAPE = "reshape";
static const std::string G_OP_TYPE_SIGMOID = "sigmoid";
static const std::string G_OP_TYPE_SOFTMAX = "softmax";
static const std::string G_OP_TYPE_TRANSPOSE = "transpose";
static const std::string G_OP_TYPE_SPLIT = "split";
static const std::string G_OP_TYPE_FEED = "feed";
static const std::string G_OP_TYPE_FETCH = "fetch";
static const std::string G_OP_TYPE_DEPTHWISE_CONV = "depthwise_conv2d";
extern const std::string G_OP_TYPE_CONV;
extern const std::string G_OP_TYPE_BATCHNORM;
extern const std::string G_OP_TYPE_BOX_CODER;
extern const std::string G_OP_TYPE_CONCAT;
extern const std::string G_OP_TYPE_ELEMENTWISE_ADD;
extern const std::string G_OP_TYPE_FUSION_CONV_ADD_RELU;
extern const std::string G_OP_TYPE_FC;
extern const std::string G_OP_TYPE_CONV_ADD;
extern const std::string G_OP_TYPE_LRN;
extern const std::string G_OP_TYPE_MUL;
extern const std::string G_OP_TYPE_MULTICLASS_NMS;
extern const std::string G_OP_TYPE_POOL2D;
extern const std::string G_OP_TYPE_PRIOR_BOX;
extern const std::string G_OP_TYPE_RELU;
extern const std::string G_OP_TYPE_RESHAPE;
extern const std::string G_OP_TYPE_SIGMOID;
extern const std::string G_OP_TYPE_SOFTMAX;
extern const std::string G_OP_TYPE_TRANSPOSE;
extern const std::string G_OP_TYPE_SPLIT;
extern const std::string G_OP_TYPE_FEED;
extern const std::string G_OP_TYPE_FETCH;
extern const std::string G_OP_TYPE_DEPTHWISE_CONV;
static std::unordered_map<
extern std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
op_input_output_key = {
{G_OP_TYPE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_CONV_ADD, {{"Input"}, {"Out"}}},
{G_OP_TYPE_RELU, {{"X"}, {"Out"}}},
{G_OP_TYPE_SOFTMAX, {{"X"}, {"Out"}}},
{G_OP_TYPE_MUL, {{"X"}, {"Out"}}},
{G_OP_TYPE_ELEMENTWISE_ADD, {{"X", "Y"}, {"Out"}}},
{G_OP_TYPE_POOL2D, {{"X"}, {"Out"}}},
{G_OP_TYPE_BATCHNORM, {{"X"}, {"Y"}}},
{G_OP_TYPE_LRN, {{"X"}, {"Out"}}},
{G_OP_TYPE_CONCAT, {{"X"}, {"Out"}}},
{G_OP_TYPE_SPLIT, {{"X"}, {"Out"}}},
{G_OP_TYPE_FEED, {{"X"}, {"Out"}}},
{G_OP_TYPE_FETCH, {{"X"}, {"Out"}}},
{G_OP_TYPE_TRANSPOSE, {{"X"}, {"Out"}}},
{G_OP_TYPE_BOX_CODER,
{{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
{G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}},
{G_OP_TYPE_DEPTHWISE_CONV, {{"Input"}, {"Output"}}}};
op_input_output_key;
} // namespace paddle_mobile
......@@ -111,7 +111,8 @@ class OperatorWithKernel : public OperatorBase<Dtype> {
std::shared_ptr<Scope> scope)
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope),
param_(inputs, outputs, attrs, *scope) {
kernel_.Init(param_);
PADDLE_MOBILE_ENFORCE(kernel_.Init(param_), " %s kernel init failed",
this->type_.c_str());
}
virtual void RunImpl() const { this->kernel_.Compute(this->param_); }
......
......@@ -160,6 +160,8 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
}
template class Loader<CPU, Precision::FP32>;
template class Loader<FPGA, Precision::FP32>;
template class Loader<GPU_MALI, Precision::FP32>;
#pragma mark - executor
......@@ -205,7 +207,10 @@ void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
data += sizeof(uint32_t);
// 2 Lod information
uint64_t lod_level = *(uint64_t *)data;
uint64_t *lod_level_ptr = new uint64_t();
memcpy(lod_level_ptr, data, sizeof(uint64_t));
uint64_t lod_level = *lod_level_ptr;
delete lod_level_ptr;
data += sizeof(uint64_t);
auto &lod = *tensor->mutable_lod();
......@@ -410,5 +415,7 @@ std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
}
template class Executor<CPU, Precision::FP32>;
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
} // namespace paddle_mobile
......@@ -20,9 +20,9 @@ int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
bool optimize = true;
auto time1 = time();
auto program = loader.Load(g_googlenet, optimize);
// auto program = loader.Load(g_googlenet_combine + "/model",
// g_googlenet_combine + "/params", optimize);
// auto program = loader.Load(g_googlenet, optimize);
auto program = loader.Load(g_googlenet_combine + "/model",
g_googlenet_combine + "/params", optimize);
auto time2 = time();
DLOG << "load cost :" << time_diff(time1, time2) << "ms\n";
paddle_mobile::Executor<paddle_mobile::CPU> executor(program, 1, optimize);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册