Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d99c317d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d99c317d
编写于
4月 22, 2020
作者:
C
Cwndmiao
提交者:
GitHub
4月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] Add more XPU op kernels (#3457)
上级
01039dc5
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
1021 addition
and
16 deletion
+1021
-16
lite/api/paddle_api.h
lite/api/paddle_api.h
+2
-0
lite/api/paddle_use_passes.h
lite/api/paddle_use_passes.h
+3
-0
lite/core/context.cc
lite/core/context.cc
+1
-0
lite/core/context.h
lite/core/context.h
+11
-1
lite/core/mir/CMakeLists.txt
lite/core/mir/CMakeLists.txt
+3
-0
lite/core/mir/elimination/identity_dropout_eliminate_pass.cc
lite/core/mir/elimination/identity_dropout_eliminate_pass.cc
+77
-0
lite/core/mir/fusion/__xpu__embedding_with_eltwise_add_fuse_pass.cc
...mir/fusion/__xpu__embedding_with_eltwise_add_fuse_pass.cc
+166
-0
lite/core/mir/fusion/__xpu__fc_fuse_pass.cc
lite/core/mir/fusion/__xpu__fc_fuse_pass.cc
+147
-0
lite/core/mir/fusion/__xpu__multi_encoder_fuse_pass.cc
lite/core/mir/fusion/__xpu__multi_encoder_fuse_pass.cc
+33
-10
lite/core/optimizer.h
lite/core/optimizer.h
+4
-0
lite/kernels/xpu/CMakeLists.txt
lite/kernels/xpu/CMakeLists.txt
+2
-0
lite/kernels/xpu/__xpu__embedding_with_eltwise_add_compute.cc
.../kernels/xpu/__xpu__embedding_with_eltwise_add_compute.cc
+87
-0
lite/kernels/xpu/__xpu__embedding_with_eltwise_add_compute.h
lite/kernels/xpu/__xpu__embedding_with_eltwise_add_compute.h
+46
-0
lite/kernels/xpu/__xpu__fc_compute.cc
lite/kernels/xpu/__xpu__fc_compute.cc
+71
-0
lite/kernels/xpu/__xpu__fc_compute.h
lite/kernels/xpu/__xpu__fc_compute.h
+36
-0
lite/kernels/xpu/stack_compute.cc
lite/kernels/xpu/stack_compute.cc
+1
-0
lite/kernels/xpu/stack_compute.h
lite/kernels/xpu/stack_compute.h
+1
-5
lite/kernels/xpu/utils.h
lite/kernels/xpu/utils.h
+31
-0
lite/operators/CMakeLists.txt
lite/operators/CMakeLists.txt
+2
-0
lite/operators/__xpu__embedding_with_eltwise_add_op.cc
lite/operators/__xpu__embedding_with_eltwise_add_op.cc
+76
-0
lite/operators/__xpu__embedding_with_eltwise_add_op.h
lite/operators/__xpu__embedding_with_eltwise_add_op.h
+46
-0
lite/operators/__xpu__fc_op.cc
lite/operators/__xpu__fc_op.cc
+109
-0
lite/operators/__xpu__fc_op.h
lite/operators/__xpu__fc_op.h
+46
-0
lite/operators/op_params.h
lite/operators/op_params.h
+20
-0
未找到文件。
lite/api/paddle_api.h
浏览文件 @
d99c317d
...
...
@@ -208,6 +208,8 @@ class LITE_API CxxConfig : public ConfigBase {
// current thread.
void
set_xpu_workspace_l3_size_per_thread
(
int
l3_size
=
0xfffc00
);
// XPU only, specify the target device ID for the current thread.
// **DEPRECATED**, use xpu_set_device() at the very beginning of each worker
// thread
void
set_xpu_dev_per_thread
(
int
dev_no
=
0
);
};
...
...
lite/api/paddle_use_passes.h
浏览文件 @
d99c317d
...
...
@@ -33,6 +33,7 @@ USE_MIR_PASS(lite_transpose_softmax_transpose_fuse_pass);
USE_MIR_PASS
(
lite_interpolate_fuse_pass
);
USE_MIR_PASS
(
lite_sequence_pool_concat_fuse_pass
);
USE_MIR_PASS
(
identity_scale_eliminate_pass
);
USE_MIR_PASS
(
identity_dropout_eliminate_pass
);
USE_MIR_PASS
(
lite_conv_elementwise_fuse_pass
);
USE_MIR_PASS
(
lite_conv_activation_fuse_pass
);
USE_MIR_PASS
(
lite_var_conv_2d_activation_fuse_pass
);
...
...
@@ -53,3 +54,5 @@ USE_MIR_PASS(apu_subgraph_pass);
USE_MIR_PASS
(
quantized_op_attributes_inference_pass
);
USE_MIR_PASS
(
__xpu__resnet_fuse_pass
);
USE_MIR_PASS
(
__xpu__multi_encoder_fuse_pass
);
USE_MIR_PASS
(
__xpu__embedding_with_eltwise_add_fuse_pass
);
USE_MIR_PASS
(
__xpu__fc_fuse_pass
);
lite/core/context.cc
浏览文件 @
d99c317d
...
...
@@ -19,6 +19,7 @@ namespace lite {
#ifdef LITE_WITH_XPU
thread_local
xdnn
::
Context
*
Context
<
TargetType
::
kXPU
>::
_tls_raw_ctx
{
nullptr
};
int
Context
<
TargetType
::
kXPU
>::
_workspace_l3_size_per_thread
{
0
};
#endif
}
// namespace lite
...
...
lite/core/context.h
浏览文件 @
d99c317d
...
...
@@ -151,14 +151,23 @@ class Context<TargetType::kXPU> {
if
(
_tls_raw_ctx
==
nullptr
)
{
_tls_raw_ctx
=
xdnn
::
create_context
();
CHECK
(
_tls_raw_ctx
);
int
r
=
xdnn
::
set_workspace_l3_size
(
_tls_raw_ctx
,
_workspace_l3_size_per_thread
);
if
(
r
!=
0
)
{
LOG
(
WARNING
)
<<
"xdnn::set_workspace_l3_size() failed, r = "
<<
r
<<
", _workspace_l3_size_per_thread = "
<<
_workspace_l3_size_per_thread
;
}
}
return
_tls_raw_ctx
;
}
static
void
SetWorkspaceL3Size
(
int
l3_size
=
0xfffc00
)
{
xdnn
::
set_workspace_l3_size
(
GetRawContext
(),
l3_size
)
;
_workspace_l3_size_per_thread
=
l3_size
;
}
// **DEPRECATED**, use xpu_set_device() at the very beginning of each worker
// thread
static
void
SetDev
(
int
dev_no
=
0
)
{
const
char
*
dev_env
=
getenv
(
"LITE_XPU_DEV"
);
if
(
dev_env
)
{
...
...
@@ -173,6 +182,7 @@ class Context<TargetType::kXPU> {
private:
static
thread_local
xdnn
::
Context
*
_tls_raw_ctx
;
static
int
_workspace_l3_size_per_thread
;
};
#endif
...
...
lite/core/mir/CMakeLists.txt
浏览文件 @
d99c317d
...
...
@@ -23,7 +23,10 @@ lite_cc_library(mir_passes
fusion/sequence_pool_concat_fuse_pass.cc
fusion/__xpu__resnet_fuse_pass.cc
fusion/__xpu__multi_encoder_fuse_pass.cc
fusion/__xpu__embedding_with_eltwise_add_fuse_pass.cc
fusion/__xpu__fc_fuse_pass.cc
elimination/identity_scale_eliminate_pass.cc
elimination/identity_dropout_eliminate_pass.cc
elimination/elementwise_mul_constant_eliminate_pass.cc
static_kernel_pick_pass.cc
variable_place_inference_pass.cc
...
...
lite/core/mir/elimination/identity_dropout_eliminate_pass.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/core/mir/pass.h"
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/pattern_matcher_high_api.h"
namespace
paddle
{
namespace
lite
{
namespace
mir
{
namespace
{
class
Eliminator
:
public
FuseBase
{
public:
void
BuildPattern
()
override
{
// the previous op's output need updat
auto
*
pre_op
=
OpNode
(
"preop"
)
->
assert_is_not_op_type
(
"conditional_block"
);
// TODO(Superjomn) check has only one output
auto
*
x
=
VarNode
(
"x"
)
->
assert_is_op_input
(
"dropout"
,
"X"
);
auto
*
dropout_op
=
OpNode
(
"dropout"
,
"dropout"
)
->
assert_op_attr
<
int
>
(
"is_test"
,
1
)
->
assert_op_attr
<
std
::
string
>
(
"dropout_implementation"
,
"upscale_in_train"
);
auto
*
out
=
VarNode
(
"out"
)
->
assert_is_op_output
(
"dropout"
,
"Out"
);
auto
*
mask
=
VarNode
(
"mask"
)
->
assert_is_op_output
(
"dropout"
,
"Mask"
);
*
pre_op
>>
*
x
>>
*
dropout_op
>>
*
out
;
*
dropout_op
>>
*
mask
;
// The pre_op will be eliminated, and a new output-updated op will insert.
x
->
AsIntermediate
();
// x is pre_op's output, need to update
dropout_op
->
AsIntermediate
();
mask
->
AsIntermediate
();
}
private:
void
InsertNewNode
(
SSAGraph
*
graph
,
const
key2nodes_t
&
matched
)
override
{
auto
&
pre_op
=
matched
.
at
(
"preop"
)
->
AsStmt
();
auto
op_info
=
*
pre_op
.
op_info
();
op_info
.
UpdateAllOutputs
(
matched
.
at
(
"x"
)
->
AsArg
().
name
,
matched
.
at
(
"out"
)
->
AsArg
().
name
);
pre_op
.
ResetOp
(
op_info
,
graph
->
valid_places
());
IR_NODE_LINK_TO
(
matched
.
at
(
"preop"
),
matched
.
at
(
"out"
));
}
};
}
// namespace
class
IdentityDropoutEliminatePass
:
public
ProgramPass
{
public:
void
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
override
{
Eliminator
eliminator
;
eliminator
(
graph
.
get
());
}
};
}
// namespace mir
}
// namespace lite
}
// namespace paddle
REGISTER_MIR_PASS
(
identity_dropout_eliminate_pass
,
paddle
::
lite
::
mir
::
IdentityDropoutEliminatePass
)
.
BindTargets
({
TARGET
(
kXPU
)});
lite/core/mir/fusion/__xpu__embedding_with_eltwise_add_fuse_pass.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <vector>
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/xpu_pattern_matcher_high_api.h"
#include "lite/utils/string.h"
namespace
paddle
{
namespace
lite
{
namespace
mir
{
namespace
fusion
{
class
XPUEmbeddingWithEltwiseAddFuser
:
public
FuseBase
{
public:
explicit
XPUEmbeddingWithEltwiseAddFuser
(
int
n_embedding
)
:
n_embedding_
(
n_embedding
)
{}
void
BuildPattern
()
override
{
auto
*
ids0
=
VarNode
(
"ids0"
)
->
assert_is_op_input
(
"lookup_table"
,
"Ids"
)
->
AsInput
();
auto
*
table0
=
VarNode
(
"table0"
)
->
assert_is_op_input
(
"lookup_table"
,
"W"
)
->
AsInput
();
auto
*
embedding0
=
OpNode
(
"embedding0"
,
"lookup_table"
);
auto
*
embedding_out0
=
VarNode
(
"embedding_out0"
)
->
assert_is_op_output
(
"lookup_table"
,
"Out"
)
->
assert_is_op_input
(
"elementwise_add"
,
"X"
)
->
AsIntermediate
();
auto
*
ids1
=
VarNode
(
"ids1"
)
->
assert_is_op_input
(
"lookup_table"
,
"Ids"
)
->
AsInput
();
auto
*
table1
=
VarNode
(
"table1"
)
->
assert_is_op_input
(
"lookup_table"
,
"W"
)
->
AsInput
();
auto
*
embedding1
=
OpNode
(
"embedding1"
,
"lookup_table"
)
->
AsIntermediate
();
auto
*
embedding_out1
=
VarNode
(
"embedding_out1"
)
->
assert_is_op_output
(
"lookup_table"
,
"Out"
)
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
AsIntermediate
();
auto
*
ewadd01
=
OpNode
(
"ewadd01"
,
"elementwise_add"
)
->
AsIntermediate
();
auto
*
ewadd01_out
=
VarNode
(
"ewadd01_out"
)
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
)
->
AsIntermediate
();
embedding0
->
LinksFrom
({
ids0
,
table0
});
embedding0
->
LinksTo
({
embedding_out0
});
embedding1
->
LinksFrom
({
ids1
,
table1
});
embedding1
->
LinksTo
({
embedding_out1
});
ewadd01
->
LinksFrom
({
embedding_out0
,
embedding_out1
});
ewadd01
->
LinksTo
({
ewadd01_out
});
auto
*
last_ewadd_out
=
ewadd01_out
;
for
(
int
i
=
2
;
i
<
n_embedding_
;
++
i
)
{
auto
ids_name
=
paddle
::
lite
::
string_format
(
"ids%d"
,
i
);
auto
table_name
=
paddle
::
lite
::
string_format
(
"table%d"
,
i
);
auto
embedding_name
=
paddle
::
lite
::
string_format
(
"embedding%d"
,
i
);
auto
embedding_out_name
=
paddle
::
lite
::
string_format
(
"embedding_out%d"
,
i
);
auto
*
new_ids
=
VarNode
(
ids_name
)
->
assert_is_op_input
(
"lookup_table"
,
"Ids"
)
->
AsInput
();
auto
*
new_table
=
VarNode
(
table_name
)
->
assert_is_op_input
(
"lookup_table"
,
"W"
)
->
AsInput
();
auto
*
new_embedding
=
OpNode
(
embedding_name
,
"lookup_table"
)
->
AsIntermediate
();
auto
*
new_embedding_out
=
VarNode
(
embedding_out_name
)
->
assert_is_op_output
(
"lookup_table"
,
"Out"
)
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
AsIntermediate
();
new_embedding
->
LinksFrom
({
new_ids
,
new_table
});
new_embedding
->
LinksTo
({
new_embedding_out
});
auto
ewadd_name
=
paddle
::
lite
::
string_format
(
"ewadd%d%d"
,
i
-
1
,
i
);
auto
ewadd_out_name
=
ewadd_name
+
"_out"
;
auto
*
new_ewadd
=
OpNode
(
ewadd_name
,
"elementwise_add"
)
->
AsIntermediate
();
auto
*
new_ewadd_out
=
VarNode
(
ewadd_out_name
)
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
)
->
AsIntermediate
();
new_ewadd
->
LinksFrom
({
last_ewadd_out
,
new_embedding_out
});
new_ewadd
->
LinksTo
({
new_ewadd_out
});
last_ewadd_out
=
new_ewadd_out
;
}
last_ewadd_out
->
AsOutput
();
}
void
InsertNewNode
(
SSAGraph
*
graph
,
const
key2nodes_t
&
matched
)
override
{
cpp
::
OpDesc
op_desc
;
op_desc
.
SetType
(
"__xpu__embedding_with_eltwise_add"
);
std
::
vector
<
std
::
string
>
ids_names
;
std
::
vector
<
std
::
string
>
table_names
;
for
(
int
i
=
0
;
i
<
n_embedding_
;
++
i
)
{
auto
ids_name
=
paddle
::
lite
::
string_format
(
"ids%d"
,
i
);
ids_names
.
push_back
(
matched
.
at
(
ids_name
)
->
arg
()
->
name
);
auto
table_name
=
paddle
::
lite
::
string_format
(
"table%d"
,
i
);
table_names
.
push_back
(
matched
.
at
(
table_name
)
->
arg
()
->
name
);
}
op_desc
.
SetInput
(
"Ids"
,
ids_names
);
op_desc
.
SetInput
(
"Tables"
,
table_names
);
auto
output_name
=
paddle
::
lite
::
string_format
(
"ewadd%d%d_out"
,
n_embedding_
-
2
,
n_embedding_
-
1
);
op_desc
.
SetOutput
(
"Output"
,
{
matched
.
at
(
output_name
)
->
arg
()
->
name
});
op_desc
.
SetAttr
<
int
>
(
"n_embedding"
,
n_embedding_
);
auto
*
embedding0_op_info
=
matched
.
at
(
"embedding0"
)
->
stmt
()
->
op_info
();
op_desc
.
SetAttr
<
int64_t
>
(
"padding_idx"
,
embedding0_op_info
->
GetAttr
<
int64_t
>
(
"padding_idx"
));
auto
*
new_stmt
=
matched
.
at
(
"embedding0"
)
->
stmt
();
auto
new_op
=
LiteOpRegistry
::
Global
().
Create
(
op_desc
.
Type
());
new_op
->
Attach
(
op_desc
,
new_stmt
->
op
()
->
scope
());
new_op
->
SetValidPlaces
(
new_stmt
->
op
()
->
valid_places
());
auto
kernels
=
new_op
->
CreateKernels
(
new_op
->
valid_places
());
new_stmt
->
SetOp
(
new_op
);
new_stmt
->
SetKernels
(
std
::
move
(
kernels
));
for
(
int
i
=
0
;
i
<
n_embedding_
;
++
i
)
{
auto
ids_name
=
paddle
::
lite
::
string_format
(
"ids%d"
,
i
);
auto
table_name
=
paddle
::
lite
::
string_format
(
"table%d"
,
i
);
DirectedLink
(
matched
.
at
(
ids_name
),
matched
.
at
(
"embedding0"
));
DirectedLink
(
matched
.
at
(
table_name
),
matched
.
at
(
"embedding0"
));
}
IR_OP_VAR_LINK
(
matched
.
at
(
"embedding0"
),
matched
.
at
(
output_name
));
}
private:
int
n_embedding_
;
};
}
// namespace fusion
class
XPUEmbeddingWithEltwiseAddFusePass
:
public
ProgramPass
{
public:
void
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
override
{
if
(
GetBoolFromEnv
(
"XPU_ENABLE_XTCL"
))
return
;
for
(
int
n_embedding
:
{
4
,
3
})
{
fusion
::
XPUEmbeddingWithEltwiseAddFuser
fuser
(
n_embedding
);
fuser
(
graph
.
get
());
}
}
};
}
// namespace mir
}
// namespace lite
}
// namespace paddle
REGISTER_MIR_PASS
(
__xpu__embedding_with_eltwise_add_fuse_pass
,
paddle
::
lite
::
mir
::
XPUEmbeddingWithEltwiseAddFusePass
)
.
BindTargets
({
TARGET
(
kXPU
)})
.
BindKernel
(
"lookup_table"
);
lite/core/mir/fusion/__xpu__fc_fuse_pass.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include "lite/backends/xpu/math.h"
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/pattern_matcher_high_api.h"
namespace
paddle
{
namespace
lite
{
namespace
mir
{
namespace
fusion
{
class
XPUFcFuser
:
public
FuseBase
{
public:
explicit
XPUFcFuser
(
bool
with_relu
)
:
with_relu_
(
with_relu
)
{}
void
BuildPattern
()
override
{
// create nodes.
auto
*
x
=
VarNode
(
"x"
)
->
assert_is_op_input
(
"mul"
,
"X"
);
auto
*
W
=
VarNode
(
"W"
)
->
assert_is_op_input
(
"mul"
,
"Y"
);
auto
*
b
=
VarNode
(
"b"
)
->
assert_is_persistable_var
();
auto
*
mul
=
OpNode
(
"mul"
,
"mul"
);
auto
*
mul_out
=
VarNode
(
"mul_out"
);
auto
*
add
=
OpNode
(
"add"
,
"elementwise_add"
);
auto
*
Out
=
VarNode
(
"Out"
);
// create topology.
std
::
vector
<
PMNode
*>
mul_inputs
{
W
,
x
};
std
::
vector
<
PMNode
*>
add_inputs
{
mul_out
,
b
};
mul_inputs
>>
*
mul
>>
*
mul_out
;
// Some op specialities.
mul_out
->
AsIntermediate
();
mul
->
AsIntermediate
();
add
->
AsIntermediate
();
if
(
with_relu_
)
{
auto
*
add_out
=
VarNode
(
"add_out"
);
auto
*
relu
=
OpNode
(
"relu"
,
"relu"
);
std
::
vector
<
PMNode
*>
relu_inputs
{
add_out
};
add_inputs
>>
*
add
>>
*
add_out
;
relu_inputs
>>
*
relu
>>
*
Out
;
add_out
->
AsIntermediate
();
relu
->
AsIntermediate
();
}
else
{
add_inputs
>>
*
add
>>
*
Out
;
}
}
void
InsertNewNode
(
SSAGraph
*
graph
,
const
key2nodes_t
&
matched
)
override
{
auto
mul
=
matched
.
at
(
"mul"
)
->
stmt
()
->
op
();
auto
*
scope
=
mul
->
scope
();
// convert W from float to int16, and transpose W
auto
weight_name
=
matched
.
at
(
"W"
)
->
arg
()
->
name
;
auto
*
weight_t
=
scope
->
FindMutableTensor
(
weight_name
);
auto
weight_dims
=
weight_t
->
dims
();
int
weight_len
=
weight_t
->
numel
();
float
*
weight_on_host
=
weight_t
->
mutable_data
<
float
>
();
float
max_f
=
paddle
::
lite
::
xpu
::
math
::
FindMaxAbs
(
weight_on_host
,
weight_len
);
std
::
unique_ptr
<
int16_t
[]
>
weight_int16
(
new
int16_t
[
weight_len
]);
std
::
unique_ptr
<
int16_t
[]
>
weight_trans_int16
(
new
int16_t
[
weight_len
]);
paddle
::
lite
::
xpu
::
math
::
ConvertFP32ToInt16
(
weight_on_host
,
weight_int16
.
get
(),
max_f
,
weight_len
);
paddle
::
lite
::
xpu
::
math
::
Transpose
(
weight_int16
.
get
(),
weight_trans_int16
.
get
(),
weight_dims
[
0
],
weight_dims
[
1
]);
memcpy
(
weight_on_host
,
weight_trans_int16
.
get
(),
weight_len
*
sizeof
(
int16_t
));
auto
op_desc
=
GenOpDesc
(
matched
,
max_f
,
true
);
auto
fc_op
=
LiteOpRegistry
::
Global
().
Create
(
"__xpu__fc"
);
auto
&
valid_places
=
mul
->
valid_places
();
fc_op
->
Attach
(
op_desc
,
scope
);
auto
*
new_op_node
=
graph
->
GraphCreateInstructNode
(
fc_op
,
valid_places
);
IR_NODE_LINK_TO
(
matched
.
at
(
"W"
),
new_op_node
);
IR_NODE_LINK_TO
(
matched
.
at
(
"x"
),
new_op_node
);
IR_NODE_LINK_TO
(
matched
.
at
(
"b"
),
new_op_node
);
IR_NODE_LINK_TO
(
new_op_node
,
matched
.
at
(
"Out"
));
}
private:
cpp
::
OpDesc
GenOpDesc
(
const
key2nodes_t
&
matched
,
float
w_max
,
bool
transpose_w
)
{
cpp
::
OpDesc
op_desc
=
*
matched
.
at
(
"mul"
)
->
stmt
()
->
op_info
();
op_desc
.
mutable_inputs
()
->
clear
();
op_desc
.
mutable_outputs
()
->
clear
();
op_desc
.
SetType
(
"__xpu__fc"
);
op_desc
.
SetInput
(
"Input"
,
{
matched
.
at
(
"x"
)
->
arg
()
->
name
});
op_desc
.
SetInput
(
"W"
,
{
matched
.
at
(
"W"
)
->
arg
()
->
name
});
op_desc
.
SetInput
(
"Bias"
,
{
matched
.
at
(
"b"
)
->
arg
()
->
name
});
op_desc
.
SetOutput
(
"Out"
,
{
matched
.
at
(
"Out"
)
->
arg
()
->
name
});
op_desc
.
SetAttr
(
"in_num_col_dims"
,
matched
.
at
(
"mul"
)
->
stmt
()
->
op_info
()
->
GetAttr
<
int
>
(
"x_num_col_dims"
));
op_desc
.
SetAttr
(
"w_max"
,
w_max
);
op_desc
.
SetAttr
(
"transpose_w"
,
transpose_w
);
if
(
with_relu_
)
{
op_desc
.
SetAttr
(
"activation_type"
,
std
::
string
{
"relu"
});
}
return
op_desc
;
}
bool
with_relu_
;
};
}
// namespace fusion
class
XPUFcFusePass
:
public
ProgramPass
{
public:
void
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
override
{
if
(
GetBoolFromEnv
(
"XPU_ENABLE_XTCL"
))
return
;
fusion
::
XPUFcFuser
fuser
(
true
/* with_relu */
);
fuser
(
graph
.
get
());
fusion
::
XPUFcFuser
fuser2
(
false
/* with_relu */
);
fuser2
(
graph
.
get
());
}
};
}
// namespace mir
}
// namespace lite
}
// namespace paddle
REGISTER_MIR_PASS
(
__xpu__fc_fuse_pass
,
paddle
::
lite
::
mir
::
XPUFcFusePass
)
.
BindTargets
({
TARGET
(
kXPU
)})
.
BindKernel
(
"fc"
);
lite/core/mir/fusion/__xpu__multi_encoder_fuse_pass.cc
浏览文件 @
d99c317d
...
...
@@ -16,6 +16,7 @@
#include <vector>
#include "lite/backends/xpu/math.h"
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/type_precision_cast_pass.h" // For UpdateInputs()
#include "lite/core/mir/xpu_pattern_matcher_high_api.h"
#include "lite/operators/subgraph_op.h"
...
...
@@ -588,8 +589,7 @@ class XPUMultiEncoderFuser {
multi_encoder_stmt
->
SetOp
(
multi_encoder_op
);
multi_encoder_stmt
->
SetKernels
(
std
::
move
(
kernels
));
// temp remove useless cast
std
::
unordered_set
<
const
Node
*>
to_remove2
;
// remove dangling/useless cast
Node
*
stack
=
nullptr
;
for
(
auto
*
node
:
graph
->
StmtTopologicalOrder
())
{
CHECK
(
node
->
IsStmt
());
...
...
@@ -597,16 +597,39 @@ class XPUMultiEncoderFuser {
stack
=
node
;
}
}
Node
*
stack_out
=
stack
->
outlinks
.
front
();
for
(
Node
*
cast
:
stack_out
->
outlinks
)
{
Node
*
cast_out
=
cast
->
outlinks
.
front
();
if
(
cast_out
->
outlinks
.
size
()
==
0
)
{
// remove
to_remove2
.
insert
(
cast_out
);
to_remove2
.
insert
(
cast
);
if
(
stack
)
{
std
::
unordered_set
<
const
Node
*>
to_remove2
;
Node
*
stack_out
=
stack
->
outlinks
.
front
();
// avoid modification while traversing
auto
stack_out_outlinks
=
stack_out
->
outlinks
;
for
(
Node
*
cast
:
stack_out_outlinks
)
{
if
(
cast
->
stmt
()
->
op_info
()
->
Type
()
!=
"cast"
)
{
continue
;
}
Node
*
cast_out
=
cast
->
outlinks
.
front
();
if
(
cast_out
->
outlinks
.
size
()
==
0
)
{
// dangling cast
to_remove2
.
insert
(
cast
);
to_remove2
.
insert
(
cast_out
);
VLOG
(
3
)
<<
"Remove dangling cast ["
<<
cast_out
->
arg
()
->
name
<<
"]"
;
}
else
if
(
cast_out
->
outlinks
.
size
()
==
1
)
{
// useless cast
to_remove2
.
insert
(
cast
);
to_remove2
.
insert
(
cast_out
);
VLOG
(
3
)
<<
"Remove useless cast ["
<<
cast_out
->
arg
()
->
name
<<
"]"
;
auto
*
multi_encoder
=
cast_out
->
outlinks
.
front
();
DirectedLink
(
stack_out
,
multi_encoder
);
UpdateInputs
(
multi_encoder
->
stmt
()
->
op
().
get
(),
cast_out
->
arg
()
->
name
,
stack_out
->
arg
()
->
name
);
auto
update_op_info
=
*
multi_encoder
->
stmt
()
->
op_info
();
multi_encoder
->
stmt
()
->
ResetOp
(
update_op_info
,
graph
->
valid_places
());
}
}
GraphSafeRemoveNodes
(
graph
,
to_remove2
);
}
GraphSafeRemoveNodes
(
graph
,
to_remove2
);
}
};
...
...
lite/core/optimizer.h
浏览文件 @
d99c317d
...
...
@@ -77,6 +77,10 @@ class Optimizer {
#endif
"__xpu__resnet_fuse_pass"
,
"__xpu__multi_encoder_fuse_pass"
,
"__xpu__embedding_with_eltwise_add_fuse_pass"
,
"__xpu__fc_fuse_pass"
,
"identity_dropout_eliminate_pass"
,
// should be placed after
// xpu fusion
"quantized_op_attributes_inference_pass"
,
// Only for fully
// quantized model, infer
// the output scale and
...
...
lite/kernels/xpu/CMakeLists.txt
浏览文件 @
d99c317d
...
...
@@ -24,4 +24,6 @@ else()
add_kernel
(
cast_compute_xpu XPU basic SRCS cast_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
__xpu__resnet50_compute_xpu XPU extra SRCS __xpu__resnet50_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
__xpu__multi_encoder_compute_xpu XPU extra SRCS __xpu__multi_encoder_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
__xpu__embedding_with_eltwise_add_compute_xpu XPU extra SRCS __xpu__embedding_with_eltwise_add_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
__xpu__fc_compute_xpu XPU extra SRCS __xpu__fc_compute.cc DEPS
${
lite_kernel_deps
}
)
endif
()
lite/kernels/xpu/__xpu__embedding_with_eltwise_add_compute.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/xpu/__xpu__embedding_with_eltwise_add_compute.h"
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
void
XPUEmbeddingWithEltwiseAddCompute
::
PrepareForRun
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
arg_ids_
.
reserve
(
param
.
Ids
.
size
());
arg_tables_
.
reserve
(
param
.
Tables
.
size
());
for
(
auto
*
table
:
param
.
Tables
)
{
auto
&
table_dims
=
table
->
dims
();
CHECK_EQ
(
table_dims
.
size
(),
2
);
/* shape like [table_len, embed_dim] */
table_lens_cpu_
.
push_back
(
table_dims
[
0
]);
}
void
*
lens_ptr
=
nullptr
;
size_t
lens_size
=
table_lens_cpu_
.
size
()
*
sizeof
(
int
);
xpu_malloc
(
&
lens_ptr
,
lens_size
);
xpu_memcpy
(
lens_ptr
,
&
table_lens_cpu_
[
0
],
lens_size
,
XPU_HOST_TO_DEVICE
);
table_lens_guard_
.
reset
(
lens_ptr
);
}
void
XPUEmbeddingWithEltwiseAddCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
As
<
XPUContext
>
();
for
(
size_t
i
=
0
;
i
<
param
.
Ids
.
size
();
++
i
)
{
arg_ids_
[
i
]
=
param
.
Ids
[
i
]
->
data
<
int64_t
>
();
}
for
(
size_t
i
=
0
;
i
<
param
.
Tables
.
size
();
++
i
)
{
arg_tables_
[
i
]
=
param
.
Tables
[
i
]
->
data
<
float
>
();
}
auto
&
id_dims
=
param
.
Ids
[
0
]
->
dims
();
auto
&
table_dims
=
param
.
Tables
[
0
]
->
dims
();
int
idx_len
=
id_dims
[
0
]
*
id_dims
[
1
];
int
embed_dim
=
table_dims
[
1
];
int
emb_layer_num
=
param
.
Ids
.
size
();
int
r
=
xdnn
::
embedding_with_ewadd
<
float
,
int64_t
,
false
,
false
>
(
ctx
.
GetRawContext
(),
/* context */
embed_dim
,
/* embed_dim */
idx_len
,
/* idx_len */
emb_layer_num
,
/* emb_layer_num */
param
.
padding_idx
,
/* padding_idx */
&
arg_tables_
[
0
],
/* tables */
&
arg_ids_
[
0
],
/* indices */
static_cast
<
int
*>
(
table_lens_guard_
.
get
()),
/* table_lens */
nullptr
,
/* scale_after_emb */
nullptr
,
/* scale_after_ewadd */
param
.
Out
->
mutable_data
<
float
>
(
TARGET
(
kXPU
))
/* top */
);
CHECK_EQ
(
r
,
0
);
}
}
// namespace xpu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
__xpu__embedding_with_eltwise_add
,
kXPU
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
xpu
::
XPUEmbeddingWithEltwiseAddCompute
,
def
)
.
BindInput
(
"Ids"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
),
PRECISION
(
kInt64
))})
.
BindInput
(
"Tables"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
Finalize
();
lite/kernels/xpu/__xpu__embedding_with_eltwise_add_compute.h
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/kernels/xpu/utils.h" // XPUFreeDeleter
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
class
XPUEmbeddingWithEltwiseAddCompute
:
public
KernelLite
<
TARGET
(
kXPU
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
XPUEmbeddingWithEltwiseAddParam
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
private:
std
::
vector
<
const
int64_t
*>
arg_ids_
;
std
::
vector
<
const
float
*>
arg_tables_
;
std
::
unique_ptr
<
void
,
XPUFreeDeleter
>
table_lens_guard_
;
std
::
vector
<
int
>
table_lens_cpu_
;
};
}
// namespace xpu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/xpu/__xpu__fc_compute.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/xpu/__xpu__fc_compute.h"
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
void
XPUFcCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
As
<
XPUContext
>
();
auto
input_dims
=
param
.
input
->
dims
();
param
.
in_mat_dims
=
input_dims
.
Flatten2D
(
param
.
in_num_col_dims
);
int
m
=
param
.
in_mat_dims
[
0
];
int
k
=
param
.
in_mat_dims
[
1
];
int
n
=
param
.
w
->
dims
()[
1
];
const
float
*
bias
=
param
.
bias
?
param
.
bias
->
data
<
float
>
()
:
nullptr
;
xdnn
::
Activation_t
act_type
=
(
param
.
activation_type
==
"relu"
)
?
xdnn
::
Activation_t
::
RELU
:
xdnn
::
Activation_t
::
LINEAR
;
int
r
=
xdnn
::
fc_int16
(
ctx
.
GetRawContext
(),
/* context */
false
,
/* TransA */
param
.
transpose_w
,
/* TransB */
m
,
/* m */
n
,
/* n */
k
,
/* k */
1.0
f
,
/* alpha */
param
.
input
->
data
<
float
>
(),
/* A */
reinterpret_cast
<
const
int16_t
*>
(
param
.
w
->
data
<
float
>
()),
/* B */
param
.
w_max
,
/* max_b */
0.0
f
,
/* beta */
param
.
output
->
mutable_data
<
float
>
(
TARGET
(
kXPU
)),
/* C */
bias
,
/* bias */
act_type
/* act_type */
);
CHECK_EQ
(
r
,
0
);
}
}
// namespace xpu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
__xpu__fc
,
kXPU
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
xpu
::
XPUFcCompute
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindInput
(
"W"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
Finalize
();
lite/kernels/xpu/__xpu__fc_compute.h
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
class
XPUFcCompute
:
public
KernelLite
<
TARGET
(
kXPU
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
XPUFcParam
;
virtual
void
Run
();
virtual
~
XPUFcCompute
()
=
default
;
};
}
// namespace xpu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/xpu/stack_compute.cc
浏览文件 @
d99c317d
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "lite/kernels/xpu/stack_compute.h"
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
...
...
lite/kernels/xpu/stack_compute.h
浏览文件 @
d99c317d
...
...
@@ -16,18 +16,14 @@
#include <memory>
#include <vector>
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/kernel.h"
#include "lite/kernels/xpu/utils.h" // XPUFreeDeleter
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
struct
XPUFreeDeleter
{
void
operator
()(
void
*
p
)
const
{
xpu_free
(
p
);
}
};
class
StackCompute
:
public
KernelLite
<
TARGET
(
kXPU
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
StackParam
;
...
...
lite/kernels/xpu/utils.h
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/backends/xpu/xpu_header_sitter.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
xpu
{
struct
XPUFreeDeleter
{
void
operator
()(
void
*
p
)
const
{
xpu_free
(
p
);
}
};
}
// namespace xpu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/operators/CMakeLists.txt
浏览文件 @
d99c317d
...
...
@@ -154,6 +154,8 @@ add_operator(sgd_op train SRCS sgd_op.cc DEPS ${op_DEPS})
# Only for XPU
add_operator
(
__xpu__resnet50_op extra SRCS __xpu__resnet50_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
__xpu__multi_encoder_op extra SRCS __xpu__multi_encoder_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
__xpu__embedding_with_eltwise_add_op extra SRCS __xpu__embedding_with_eltwise_add_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
__xpu__fc_op extra SRCS __xpu__fc_op.cc DEPS
${
op_DEPS
}
)
if
(
NOT LITE_WITH_X86
)
lite_cc_test
(
test_fc_op SRCS fc_op_test.cc
...
...
lite/operators/__xpu__embedding_with_eltwise_add_op.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/__xpu__embedding_with_eltwise_add_op.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
XPUEmbeddingWithEltwiseAddOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
Ids
.
size
()
==
param_
.
Tables
.
size
());
auto
&
id_dims
=
param_
.
Ids
[
0
]
->
dims
();
auto
&
table_dims
=
param_
.
Tables
[
0
]
->
dims
();
int
id_rank
=
id_dims
.
size
();
CHECK_EQ_OR_FALSE
(
table_dims
.
size
(),
2
);
CHECK_EQ_OR_FALSE
(
id_dims
[
id_rank
-
1
],
1
);
return
true
;
}
bool
XPUEmbeddingWithEltwiseAddOp
::
InferShapeImpl
()
const
{
auto
&
id_dims
=
param_
.
Ids
[
0
]
->
dims
();
auto
&
table_dims
=
param_
.
Tables
[
0
]
->
dims
();
auto
out_dims
=
id_dims
;
int
id_rank
=
id_dims
.
size
();
out_dims
[
id_rank
-
1
]
=
table_dims
[
1
];
param_
.
Out
->
Resize
(
out_dims
);
param_
.
Out
->
set_lod
(
param_
.
Ids
[
0
]
->
lod
());
return
true
;
}
bool
XPUEmbeddingWithEltwiseAddOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
param_
.
Out
=
scope
->
FindVar
(
op_desc
.
Output
(
"Output"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
Ids
.
clear
();
for
(
auto
&
name
:
op_desc
.
Input
(
"Ids"
))
{
auto
t
=
const_cast
<
lite
::
Tensor
*>
(
&
scope
->
FindVar
(
name
)
->
Get
<
lite
::
Tensor
>
());
param_
.
Ids
.
push_back
(
t
);
}
param_
.
Tables
.
clear
();
for
(
auto
&
name
:
op_desc
.
Input
(
"Tables"
))
{
auto
t
=
const_cast
<
lite
::
Tensor
*>
(
&
scope
->
FindVar
(
name
)
->
Get
<
lite
::
Tensor
>
());
param_
.
Tables
.
push_back
(
t
);
}
param_
.
padding_idx
=
op_desc
.
GetAttr
<
int64_t
>
(
"padding_idx"
);
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
__xpu__embedding_with_eltwise_add
,
paddle
::
lite
::
operators
::
XPUEmbeddingWithEltwiseAddOp
);
lite/operators/__xpu__embedding_with_eltwise_add_op.h
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "lite/core/op_lite.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
XPUEmbeddingWithEltwiseAddOp
:
public
OpLite
{
public:
XPUEmbeddingWithEltwiseAddOp
()
{}
explicit
XPUEmbeddingWithEltwiseAddOp
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShapeImpl
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"EmbeddingWithEltwiseAdd"
;
}
private:
mutable
XPUEmbeddingWithEltwiseAddParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
lite/operators/__xpu__fc_op.cc
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/__xpu__fc_op.h"
#include <vector>
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
XPUFcOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
input
);
CHECK_OR_FALSE
(
param_
.
output
);
CHECK_OR_FALSE
(
param_
.
w
);
// bias is optional.
const
auto
input_dims
=
param_
.
input
->
dims
();
const
auto
w_dims
=
param_
.
w
->
dims
();
CHECK_EQ_OR_FALSE
(
w_dims
.
size
(),
2UL
);
int64_t
w_dims_1
=
w_dims
[
1
];
if
(
param_
.
bias
)
{
const
auto
bias_dims
=
param_
.
bias
->
dims
();
if
(
bias_dims
.
size
()
==
2
)
{
CHECK_EQ_OR_FALSE
(
bias_dims
[
0
],
1
);
CHECK_EQ_OR_FALSE
(
bias_dims
[
1
],
w_dims_1
);
}
else
if
(
bias_dims
.
size
()
==
1
)
{
CHECK_EQ_OR_FALSE
(
bias_dims
[
0
],
w_dims_1
);
}
}
CHECK_GT_OR_FALSE
(
input_dims
.
size
(),
static_cast
<
size_t
>
(
param_
.
in_num_col_dims
));
param_
.
in_mat_dims
=
input_dims
.
Flatten2D
(
param_
.
in_num_col_dims
);
CHECK_EQ_OR_FALSE
(
param_
.
in_mat_dims
[
1
],
w_dims
[
0
]);
return
true
;
}
bool
XPUFcOp
::
InferShapeImpl
()
const
{
const
auto
&
input_dims
=
param_
.
input
->
dims
();
const
auto
&
w_dims
=
param_
.
w
->
dims
();
int
in_num_col_dims
=
param_
.
in_num_col_dims
;
int64_t
w_dims_1
=
w_dims
[
1
];
// Set output dims
std
::
vector
<
DDim
::
value_type
>
output_dims
(
in_num_col_dims
+
1
);
for
(
int
i
=
0
;
i
<
in_num_col_dims
;
++
i
)
{
output_dims
[
i
]
=
input_dims
[
i
];
}
output_dims
[
in_num_col_dims
]
=
w_dims_1
;
param_
.
output
->
Resize
(
output_dims
);
// share LoD
param_
.
output
->
set_lod
(
param_
.
input
->
lod
());
return
true
;
}
bool
XPUFcOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
auto
input
=
op_desc
.
Input
(
"Input"
).
front
();
auto
W
=
op_desc
.
Input
(
"W"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
input
=
scope
->
FindVar
(
input
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
w
=
scope
->
FindVar
(
W
)
->
GetMutable
<
lite
::
Tensor
>
();
std
::
vector
<
std
::
string
>
input_arg_names
=
op_desc
.
InputArgumentNames
();
if
(
std
::
find
(
input_arg_names
.
begin
(),
input_arg_names
.
end
(),
"Bias"
)
!=
input_arg_names
.
end
())
{
auto
bias_arguments
=
op_desc
.
Input
(
"Bias"
);
if
(
bias_arguments
.
size
()
>
0
)
{
auto
bias_var
=
scope
->
FindVar
(
bias_arguments
.
front
());
if
(
bias_var
!=
nullptr
)
{
param_
.
bias
=
bias_var
->
GetMutable
<
lite
::
Tensor
>
();
}
}
}
CHECK
(
scope
->
FindVar
(
out
));
param_
.
output
=
scope
->
FindVar
(
out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
in_num_col_dims
=
op_desc
.
GetAttr
<
int
>
(
"in_num_col_dims"
);
param_
.
w_max
=
op_desc
.
GetAttr
<
float
>
(
"w_max"
);
if
(
op_desc
.
HasAttr
(
"activation_type"
))
{
param_
.
activation_type
=
op_desc
.
GetAttr
<
std
::
string
>
(
"activation_type"
);
}
if
(
op_desc
.
HasAttr
(
"transpose_w"
))
{
param_
.
transpose_w
=
op_desc
.
GetAttr
<
bool
>
(
"transpose_w"
);
}
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
__xpu__fc
,
paddle
::
lite
::
operators
::
XPUFcOp
);
lite/operators/__xpu__fc_op.h
0 → 100644
浏览文件 @
d99c317d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "lite/core/op_lite.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
XPUFcOp
:
public
OpLite
{
public:
XPUFcOp
()
{}
explicit
XPUFcOp
(
const
std
::
string
&
op_type
)
:
OpLite
(
op_type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShapeImpl
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"XPUFc"
;
}
private:
mutable
XPUFcParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
lite/operators/op_params.h
浏览文件 @
d99c317d
...
...
@@ -1491,6 +1491,26 @@ struct XPUMultiEncoderParam : ParamBase {
std
::
string
act_type
{};
};
struct
XPUEmbeddingWithEltwiseAddParam
:
ParamBase
{
std
::
vector
<
lite
::
Tensor
*>
Ids
;
std
::
vector
<
lite
::
Tensor
*>
Tables
;
lite
::
Tensor
*
Out
{};
int64_t
padding_idx
{
-
1
};
};
struct
XPUFcParam
:
ParamBase
{
lite
::
Tensor
*
input
{
nullptr
};
lite
::
Tensor
*
w
{
nullptr
};
lite
::
Tensor
*
bias
{
nullptr
};
lite
::
Tensor
*
output
{
nullptr
};
int
in_num_col_dims
{
1
};
lite
::
DDim
in_mat_dims
;
float
w_max
{
0.0
f
};
bool
transpose_w
{
true
};
std
::
string
activation_type
{
""
};
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录