Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d8d866dd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d8d866dd
编写于
3月 19, 2019
作者:
R
Ray Liu
提交者:
GitHub
3月 19, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into backup
上级
6d8f78a7
c6a6975f
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
788 addition
and
158 deletion
+788
-158
src/fpga/V1/api.cpp
src/fpga/V1/api.cpp
+48
-6
src/fpga/V1/filter.cpp
src/fpga/V1/filter.cpp
+2
-1
src/framework/executor.cpp
src/framework/executor.cpp
+26
-18
src/framework/executor.h
src/framework/executor.h
+3
-3
src/framework/operator.cpp
src/framework/operator.cpp
+6
-3
src/io/api_paddle_mobile.cc
src/io/api_paddle_mobile.cc
+1
-1
src/io/paddle_mobile.cpp
src/io/paddle_mobile.cpp
+5
-0
src/io/paddle_mobile.h
src/io/paddle_mobile.h
+1
-0
src/operators/kernel/fpga/V1/feed_kernel.cpp
src/operators/kernel/fpga/V1/feed_kernel.cpp
+1
-0
src/operators/kernel/fpga/V1/fetch_kernel.cpp
src/operators/kernel/fpga/V1/fetch_kernel.cpp
+12
-8
test/CMakeLists.txt
test/CMakeLists.txt
+25
-10
test/fpga/test_marker_api.cpp
test/fpga/test_marker_api.cpp
+221
-0
test/fpga/test_mobilenet_api.cpp
test/fpga/test_mobilenet_api.cpp
+158
-0
test/fpga/test_rfcn_api.cpp
test/fpga/test_rfcn_api.cpp
+121
-108
test/fpga/test_yolo_api.cpp
test/fpga/test_yolo_api.cpp
+158
-0
未找到文件。
src/fpga/V1/api.cpp
浏览文件 @
d8d866dd
...
...
@@ -70,10 +70,11 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor) {
DLOG
<<
"Wrong ofm dimension"
;
}
auto
p
=
fpga_malloc
(
memory_size
);
memset
(
p
,
0
,
memory_size
);
//
memset(p, 0, memory_size);
ofm_tensor
->
reset_data_ptr
(
p
);
ofm_tensor
->
set_type
(
typeid
(
half
));
ofm_tensor
->
fpga_data_num
=
memory_size
/
sizeof
(
half
);
fpga
::
fpga_flush
(
p
,
memory_size
);
}
void
format_fp16_ofm
(
framework
::
Tensor
*
ofm_tensor
,
framework
::
DDim
dims
)
{
...
...
@@ -89,10 +90,11 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
DLOG
<<
"Wrong ofm dimension"
;
}
auto
p
=
fpga_malloc
(
memory_size
);
memset
(
p
,
0
,
memory_size
);
//
memset(p, 0, memory_size);
ofm_tensor
->
reset_data_ptr
(
p
);
ofm_tensor
->
set_type
(
typeid
(
half
));
ofm_tensor
->
fpga_data_num
=
memory_size
/
sizeof
(
half
);
fpga
::
fpga_flush
(
p
,
memory_size
);
}
void
format_fp32_ofm
(
framework
::
Tensor
*
ofm_tensor
)
{
...
...
@@ -108,10 +110,11 @@ void format_fp32_ofm(framework::Tensor *ofm_tensor) {
DLOG
<<
"Wrong ofm dimension"
;
}
auto
p
=
fpga_malloc
(
memory_size
);
memset
(
p
,
0
,
memory_size
);
//
memset(p, 0, memory_size);
ofm_tensor
->
reset_data_ptr
(
p
);
ofm_tensor
->
set_type
(
typeid
(
float
));
ofm_tensor
->
fpga_data_num
=
memory_size
/
sizeof
(
float
);
fpga
::
fpga_flush
(
p
,
memory_size
);
}
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
)
{
...
...
@@ -463,9 +466,24 @@ void expand_EW_arg(EWAddArgs *arg) {
uint64_t
image_amount_per_row
=
align_to_x
((
uint64_t
)
args
.
image0
.
width
*
(
uint64_t
)
args
.
image0
.
channels
,
IMAGE_ALIGNMENT
);
uint64_t
image_image_pixel
=
((
uint64_t
)
args
.
image0
.
channels
<<
32
)
|
((
uint64_t
)
args
.
image0
.
width
<<
16
)
|
(
uint64_t
)
args
.
image0
.
height
;
//////////////////////////////////////////////////////////
// temporary modify for EW and DMA problem
uint64_t
image_image_pixel
=
0
;
if
((
args
.
image0
.
width
*
args
.
image0
.
channels
)
>=
24576
)
{
if
((
args
.
image0
.
width
*
args
.
image0
.
channels
)
%
32
!=
0
)
{
DLOG
<<
"EW parameter can not be support"
;
}
else
{
image_amount_per_row
=
image_amount_per_row
/
2
;
image_image_pixel
=
((
uint64_t
)
args
.
image0
.
channels
<<
32
)
|
((
uint64_t
)(
args
.
image0
.
width
/
2
)
<<
16
)
|
(
uint64_t
)(
args
.
image0
.
height
*
2
);
}
}
else
{
image_image_pixel
=
((
uint64_t
)
args
.
image0
.
channels
<<
32
)
|
((
uint64_t
)
args
.
image0
.
width
<<
16
)
|
(
uint64_t
)
args
.
image0
.
height
;
}
//////////////////////////////////////////////////////////
(
*
arg
).
driver
.
image0_address_phy
=
image0_address_phy
;
(
*
arg
).
driver
.
image1_address_phy
=
image1_address_phy
;
...
...
@@ -560,6 +578,18 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
reinterpret_cast
<
char
*>
(
arg
->
conv_arg
[
i
].
filter_address
),
deleter
));
memcpy
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_head
,
filter_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_size
);
// for test
// {
// static int cnt = 0;
// if(cnt == 4){
// int8_t result = 0;
// std::string str = "fc_filter";
// fpga::savefile<int8_t>(str, arg->conv_arg[i].filter_address,
// filter_size, result);
//
// }
// cnt++;
//}
size_t
bs_size
=
2
*
align_to_x
(
arg
->
conv_arg
[
i
].
filter_num
,
BS_NUM_ALIGNMENT
)
*
...
...
@@ -570,6 +600,18 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
reinterpret_cast
<
char
*>
(
arg
->
conv_arg
[
i
].
sb_address
),
deleter
));
memcpy
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_head
,
bs_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_size
);
// for test
/*{
static int cnt = 0;
if(cnt == 4){
float result = 0;
std::string str = "fc_bs";
fpga::savefile<float>(str, arg->conv_arg[i].sb_address, bs_size/4,
result);
}
cnt++;
}*/
if
(
n
>
1
)
{
arg
->
conv_arg
[
i
].
output
.
scale_address
=
...
...
src/fpga/V1/filter.cpp
浏览文件 @
d8d866dd
...
...
@@ -268,6 +268,7 @@ void format_fc_filter(float **data_in, int num, int channel, int height,
quantize
(
data_in
,
data_size
,
max
);
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_fc_filter
(
quantize_data
,
num
,
chw
);
convert_to_hwc
(
quantize_data
,
num
,
channel
,
height
,
width
);
align_element
(
quantize_data
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
...
...
@@ -316,7 +317,7 @@ void align_element_n(int16_t **data_in, int num, int height, int width) {
}
*
data_in
=
data_tmp
;
free
(
tmp
);
f
pga_f
ree
(
tmp
);
}
}
void
quantize_to_fp16
(
float
**
data_in
,
int
num
,
int
height
,
int
width
,
...
...
src/framework/executor.cpp
浏览文件 @
d8d866dd
...
...
@@ -90,11 +90,6 @@ Executor<Device, T>::Executor(const Program<Device> &program,
InitMemory
();
}
#ifdef PADDLE_MOBILE_FPGA
program_
.
scope
->
EraseVars
({
"feed"
,
"fetch"
});
program_
.
scope
->
print_vars
();
#endif
int
count
=
0
;
for
(
auto
&
op_handler
:
ops_of_block0_
)
{
DLOG
<<
"Initialize op["
<<
count
++
<<
"]: "
<<
op_handler
->
Type
();
...
...
@@ -514,6 +509,32 @@ PMStatus Executor<Device, T>::Predict() {
return
PMSuccess
;
}
template
<
typename
Device
,
typename
T
>
void
Executor
<
Device
,
T
>::
FeedTensorData
(
const
vector
<
framework
::
Tensor
>
&
v
)
{
auto
input_size
=
v
.
size
();
auto
*
feed_var
=
program_
.
scope
->
Var
(
"feed"
);
PADDLE_MOBILE_ENFORCE
(
input_size
==
feed_indices_
.
size
(),
"input data number not correct"
);
for
(
int
i
=
0
;
i
<
input_size
;
i
++
)
{
framework
::
LoDTensor
&
target
=
feed_var
->
template
GetMutable
<
framework
::
LoDTensorArray
>()
->
at
(
i
);
target
.
ShareDataWith
(
v
[
input_size
-
i
-
1
]);
}
}
template
<
typename
Device
,
typename
T
>
void
Executor
<
Device
,
T
>::
GetTensorResults
(
std
::
vector
<
framework
::
Tensor
*>
*
v
)
{
auto
*
fetch_var
=
program_
.
scope
->
Var
(
"fetch"
);
auto
output_size
=
fetch_indices_
.
size
();
for
(
int
i
=
0
;
i
<
output_size
;
i
++
)
{
framework
::
LoDTensor
&
target
=
fetch_var
->
template
GetMutable
<
framework
::
LoDTensorArray
>()
->
at
(
i
);
v
->
push_back
(
&
target
);
}
}
#ifdef PADDLE_MOBILE_FPGA
template
<
typename
Device
,
typename
T
>
void
Executor
<
Device
,
T
>::
InjectVariable
(
const
Tensor
&
t
,
...
...
@@ -559,19 +580,6 @@ void Executor<Device, T>::GetResults(std::vector<void *> *v) {
}
}
template
<
typename
Device
,
typename
T
>
void
Executor
<
Device
,
T
>::
GetTensorResults
(
std
::
vector
<
framework
::
Tensor
*>
*
v
)
{
int
index
=
0
;
auto
vars
=
program_
.
scope
->
VarContain
(
"fetch"
,
&
index
);
auto
output_size
=
vars
.
size
();
for
(
int
i
=
0
;
i
<
output_size
;
i
++
)
{
auto
var
=
program_
.
scope
->
Var
(
"fetch"
,
i
+
index
);
auto
fetch_tensor
=
var
->
template
GetMutable
<
LoDTensor
>();
v
->
push_back
(
fetch_tensor
);
}
}
template
<
typename
Device
,
typename
T
>
framework
::
Tensor
*
Executor
<
Device
,
T
>::
GetTensorByName
(
const
std
::
string
&
name
)
{
...
...
src/framework/executor.h
浏览文件 @
d8d866dd
...
...
@@ -51,15 +51,15 @@ class Executor {
std
::
shared_ptr
<
LoDTensor
>
GetOutput
(
const
std
::
string
&
var_name
);
void
FeedTensorData
(
const
std
::
vector
<
framework
::
Tensor
>
&
v
);
void
GetTensorResults
(
std
::
vector
<
framework
::
Tensor
*>
*
v
);
#ifdef PADDLE_MOBILE_FPGA
void
InjectVariable
(
const
Tensor
&
t
,
std
::
string
var_name
);
void
FeedData
(
const
Tensor
&
t
);
void
FeedData
(
const
std
::
vector
<
void
*>
&
v
);
void
GetResults
(
std
::
vector
<
void
*>
*
v
);
void
GetTensorResults
(
std
::
vector
<
framework
::
Tensor
*>
*
v
);
framework
::
Tensor
*
GetTensorByName
(
const
std
::
string
&
name
);
std
::
shared_ptr
<
Tensor
>
FetchResult
(
int
id
=
-
1
);
void
Predict_From_To
(
int
start
=
0
,
int
end
=
-
1
);
void
Predict_From
(
int
start
);
...
...
src/framework/operator.cpp
浏览文件 @
d8d866dd
...
...
@@ -50,9 +50,6 @@ OperatorBase<Dtype>::OperatorBase(const std::string &type,
attrs_
(
attrs
),
scope_
(
scope
)
{
CheckAllInputOutputSet
();
#ifdef PADDLE_MOBILE_FPGA
InsertTensors
();
#endif
}
template
<
typename
Dtype
>
...
...
@@ -72,6 +69,9 @@ void OperatorBase<Dtype>::Run() {
var
->
template
IsType
<
framework
::
LoDTensor
>())
{
const
Tensor
*
tensor
=
var
->
template
Get
<
framework
::
LoDTensor
>();
if
(
tensor
)
DLOG
<<
type_
<<
" input- "
<<
key
<<
"="
<<
*
tensor
;
#ifdef PADDLE_MOBILE_FPGA
DLOG
<<
var_vec_in
[
i
];
#endif
}
}
}
...
...
@@ -83,6 +83,9 @@ void OperatorBase<Dtype>::Run() {
var
->
template
IsType
<
framework
::
LoDTensor
>())
{
const
Tensor
*
tensor
=
var
->
template
Get
<
framework
::
LoDTensor
>();
if
(
tensor
)
DLOG
<<
type_
<<
" output- "
<<
key
<<
"="
<<
*
tensor
;
#ifdef PADDLE_MOBILE_FPGA
DLOG
<<
var_vec_out
[
i
];
#endif
}
}
}
...
...
src/io/api_paddle_mobile.cc
浏览文件 @
d8d866dd
...
...
@@ -146,7 +146,7 @@ void PaddleMobilePredictor<Device, T>::FeedPaddleTensors(
tensors
[
i
].
init
(
typeid
(
float
));
ConvertPaddleTensors
(
inputs
[
i
],
&
tensors
[
i
]);
}
//
paddle_mobile_->FeedTensorData(tensors);
paddle_mobile_
->
FeedTensorData
(
tensors
);
}
template
<
typename
Device
,
typename
T
>
...
...
src/io/paddle_mobile.cpp
浏览文件 @
d8d866dd
...
...
@@ -236,6 +236,11 @@ template <typename Device, typename T>
void
PaddleMobile
<
Device
,
T
>::
FeedData
(
const
std
::
vector
<
void
*>
&
v
)
{
executor_
->
FeedData
(
v
);
}
template
<
typename
Device
,
typename
T
>
void
PaddleMobile
<
Device
,
T
>::
FeedTensorData
(
const
std
::
vector
<
framework
::
Tensor
>
&
v
)
{
executor_
->
FeedTensorData
(
v
);
}
template
<
typename
Device
,
typename
T
>
void
PaddleMobile
<
Device
,
T
>::
GetResults
(
std
::
vector
<
void
*>
*
v
)
{
...
...
src/io/paddle_mobile.h
浏览文件 @
d8d866dd
...
...
@@ -91,6 +91,7 @@ class PaddleMobile {
void
InjectVariable
(
const
framework
::
Tensor
&
t
,
std
::
string
var_name
);
void
FeedData
(
const
framework
::
Tensor
&
t
);
void
FeedData
(
const
std
::
vector
<
void
*>
&
v
);
void
FeedTensorData
(
const
std
::
vector
<
framework
::
Tensor
>
&
v
);
void
GetResults
(
std
::
vector
<
void
*>
*
v
);
void
GetTensorResults
(
std
::
vector
<
framework
::
Tensor
*>
*
v
);
...
...
src/operators/kernel/fpga/V1/feed_kernel.cpp
浏览文件 @
d8d866dd
...
...
@@ -21,6 +21,7 @@ template <>
bool
FeedKernel
<
FPGA
,
float
>::
Init
(
FeedParam
<
FPGA
>
*
param
)
{
auto
output
=
param
->
Out
();
int
col
=
param
->
Col
();
DLOG
<<
"col = "
<<
col
;
auto
input
=
const_cast
<
LoDTensor
*>
(
&
param
->
InputX
()
->
at
(
col
));
input
->
init
(
typeid
(
float
));
input
->
Resize
(
output
->
dims
());
...
...
src/operators/kernel/fpga/V1/fetch_kernel.cpp
浏览文件 @
d8d866dd
...
...
@@ -19,6 +19,7 @@ template <>
bool
FetchKernel
<
FPGA
,
float
>::
Init
(
FetchParam
<
FPGA
>
*
param
)
{
auto
input
=
const_cast
<
LoDTensor
*>
(
param
->
InputX
());
int
col
=
param
->
Col
();
DLOG
<<
"col = "
<<
col
;
auto
output
=
&
(
param
->
Out
()
->
at
(
col
));
if
(
input
->
type
()
==
typeid
(
float
))
{
return
true
;
...
...
@@ -59,7 +60,11 @@ template <>
void
FetchKernel
<
FPGA
,
float
>::
Compute
(
const
FetchParam
<
FPGA
>
&
param
)
{
auto
input
=
const_cast
<
LoDTensor
*>
(
param
.
InputX
());
int
col
=
param
.
Col
();
LoDTensor
*
out
=
&
param
.
Out
()
->
at
(
col
);
auto
output
=
&
param
.
Out
()
->
at
(
col
);
if
(
input
->
type
()
==
typeid
(
float
))
{
output
->
ShareDataWith
(
*
input
);
return
;
}
fpga
::
BypassArgs
args
=
param
.
fpga_bypass_args
;
auto
input_address
=
(
input
->
data
<
half
>
());
...
...
@@ -67,7 +72,7 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> ¶m) {
float
*
outdata_ptr
=
reinterpret_cast
<
float
*>
(
param
.
fpga_bypass_args
.
output
.
address
);
const
int
num_th
=
32
;
if
(
(
out
->
fpga_data_num
)
<
num_th
)
{
if
(
output
->
fpga_data_num
<
num_th
)
{
fpga
::
fpga_invalidate
(
input_address
,
(
input
->
fpga_data_num
)
*
sizeof
(
half
));
for
(
int
idx
=
0
;
idx
<
product
(
input
->
dims
());
++
idx
)
{
...
...
@@ -77,14 +82,14 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> ¶m) {
}
fpga
::
PerformBypass
(
args
);
auto
outC
=
out
->
dims
()[
1
];
auto
outH
=
out
->
dims
()[
2
];
auto
outW
=
out
->
dims
()[
3
];
auto
outC
=
out
put
->
dims
()[
1
];
auto
outH
=
out
put
->
dims
()[
2
];
auto
outW
=
out
put
->
dims
()[
3
];
fpga
::
fpga_invalidate
(
param
.
fpga_bypass_args
.
output
.
address
,
out
->
fpga_data_num
*
sizeof
(
float
));
out
put
->
fpga_data_num
*
sizeof
(
float
));
if
(
out
->
fpga_data_num
!=
product
(
input
->
dims
()))
{
if
(
out
put
->
fpga_data_num
!=
product
(
input
->
dims
()))
{
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
outC
*
outH
*
outW
*
sizeof
(
float
)));
dealign
(
outdata_ptr
,
data_tmp
,
outC
,
outH
,
outW
);
...
...
@@ -92,7 +97,6 @@ void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> ¶m) {
free
(
data_tmp
);
}
}
template
class
FetchKernel
<
FPGA
,
float
>;
}
// namespace operators
...
...
test/CMakeLists.txt
浏览文件 @
d8d866dd
...
...
@@ -68,23 +68,38 @@ endif ()
list
(
FIND NET
"FPGA_NET_V1"
CON
)
if
(
CON GREATER -1
)
ADD_EXECUTABLE
(
test-resnet50 fpga/test_resnet50.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-resnet50 paddle-mobile
)
#
ADD_EXECUTABLE(test-resnet50 fpga/test_resnet50.cpp test_helper.h test_include.h executor_for_test.h)
#
target_link_libraries(test-resnet50 paddle-mobile)
ADD_EXECUTABLE
(
test-densebox fpga/test_densebox_combine.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-densebox paddle-mobile
)
#
ADD_EXECUTABLE(test-densebox fpga/test_densebox_combine.cpp test_helper.h test_include.h executor_for_test.h)
#
target_link_libraries(test-densebox paddle-mobile)
ADD_EXECUTABLE
(
test-rfcn fpga/test_rfcn.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-rfcn paddle-mobile
)
#
ADD_EXECUTABLE(test-rfcn fpga/test_rfcn.cpp test_helper.h test_include.h executor_for_test.h)
#
target_link_libraries(test-rfcn paddle-mobile)
ADD_EXECUTABLE
(
test-marker fpga/test_marker.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-marker paddle-mobile
)
#
ADD_EXECUTABLE(test-marker fpga/test_marker.cpp test_helper.h test_include.h executor_for_test.h)
#
target_link_libraries(test-marker paddle-mobile)
ADD_EXECUTABLE
(
test-rfcn-api fpga/test_rfcn_api.cpp
)
target_link_libraries
(
test-rfcn-api paddle-mobile
)
ADD_EXECUTABLE
(
test-mobilenet-api fpga/test_mobilenet_api.cpp
)
target_link_libraries
(
test-mobilenet-api paddle-mobile
)
ADD_EXECUTABLE
(
test-yolo-api fpga/test_yolo_api.cpp
)
target_link_libraries
(
test-yolo-api paddle-mobile
)
ADD_EXECUTABLE
(
test-marker-api fpga/test_marker_api.cpp
)
target_link_libraries
(
test-marker-api paddle-mobile
)
ADD_EXECUTABLE
(
test-marker2 fpga/test_marker2.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-marker2 paddle-mobile
)
#ADD_EXECUTABLE(test-marker2 fpga/test_marker2.cpp test_helper.h test_include.h executor_for_test.h )
#target_link_libraries(test-marker2 paddle-mobile)
#ADD_EXECUTABLE(test-mobilenet fpga/test_mobilenet_beijing.cpp test_helper.h test_include.h executor_for_test.h)
#target_link_libraries(test-mobilenet paddle-mobile)
#ADD_EXECUTABLE(test-yolo fpga/test_yolo_combine.cpp test_helper.h test_include.h executor_for_test.h)
#target_link_libraries(test-yolo paddle-mobile)
set
(
FOUND_MATCH ON
)
endif
()
...
...
test/fpga/test_marker_api.cpp
0 → 100644
浏览文件 @
d8d866dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using
namespace
paddle_mobile
;
using
namespace
paddle_mobile
::
fpga
;
static
const
char
*
g_image
=
"../models/marker/model/image.bin"
;
static
const
char
*
g_model
=
"../models/marker/model/model"
;
static
const
char
*
g_param
=
"../models/marker/model/params"
;
static
const
char
*
g_image1
=
"../models/marker2/model/marker.bin"
;
static
const
char
*
g_model1
=
"../models/marker2/model/model"
;
static
const
char
*
g_param1
=
"../models/marker2/model/params"
;
void
readStream
(
std
::
string
filename
,
char
*
buf
)
{
std
::
ifstream
in
;
in
.
open
(
filename
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
if
(
!
in
.
is_open
())
{
std
::
cout
<<
"open File Failed."
<<
std
::
endl
;
return
;
}
in
.
seekg
(
0
,
std
::
ios
::
end
);
// go to the end
auto
length
=
in
.
tellg
();
// report location (this is the length)
in
.
seekg
(
0
,
std
::
ios
::
beg
);
// go back to the beginning
in
.
read
(
buf
,
length
);
in
.
close
();
}
signed
char
float_to_int8
(
float
fdata
)
{
if
(
fdata
<
0.0
)
{
fdata
-=
0.5
;
}
else
{
fdata
+=
0.5
;
}
return
(
signed
char
)
fdata
;
}
void
quantize
(
float
**
data_in
,
int
data_size
)
{
float
*
tmp
=
*
data_in
;
signed
char
*
tmp_data
=
(
signed
char
*
)
paddle_mobile
::
fpga
::
fpga_malloc
(
data_size
*
sizeof
(
char
));
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
float_to_int8
((
*
data_in
)[
i
]
+
128
);
}
*
data_in
=
(
float
*
)
tmp_data
;
// NOLINT
paddle_mobile
::
fpga
::
fpga_free
(
tmp
);
}
void
convert_to_chw
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
,
float
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
void
dump_stride_float
(
std
::
string
filename
,
paddle_mobile
::
PaddleTensor
input_tensor
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
data
.
data
());
int
c
=
(
input_tensor
.
shape
)[
1
];
int
h
=
(
input_tensor
.
shape
)[
2
];
int
w
=
(
input_tensor
.
shape
)[
3
];
int
n
=
(
input_tensor
.
shape
)[
0
];
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
c
*
h
*
w
*
sizeof
(
float
)));
// convert_to_chw(&data_ptr, c, h, w, data_tmp);
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
datasize
=
abs
(
c
*
h
*
w
*
n
);
if
(
datasize
==
0
)
{
std
::
cout
<<
"wrong dump data size"
<<
std
::
endl
;
return
;
}
for
(
int
i
=
0
;
i
<
datasize
;
i
++
)
{
result
=
data_ptr
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
}
void
dump_stride
(
std
::
string
filename
,
paddle_mobile
::
PaddleTensor
input_tensor
)
{
if
(
input_tensor
.
dtypeid
==
typeid
(
float
))
{
dump_stride_float
(
filename
,
input_tensor
);
}
else
{
std
::
cout
<<
"only support dumping float data"
<<
std
::
endl
;
}
}
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model
;
config
.
param_file
=
g_param
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
PaddleMobileConfig
GetConfig1
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model1
;
config
.
param_file
=
g_param1
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
int
main
()
{
open_device
();
PaddleMobileConfig
config1
=
GetConfig1
();
auto
predictor1
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config1
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
1
;
++
i
)
{
int
img_length1
=
144
*
14
*
14
;
auto
img1
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length1
*
sizeof
(
float
)));
readStream
(
g_image1
,
reinterpret_cast
<
char
*>
(
img1
));
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img1
;
t_img1
.
dtypeid
=
typeid
(
float
);
t_img1
.
layout
=
LAYOUT_HWC
;
t_img1
.
shape
=
std
::
vector
<
int
>
({
1
,
14
,
14
,
144
});
t_img1
.
name
=
"Image information"
;
t_img1
.
data
.
Reset
(
img1
,
img_length1
*
sizeof
(
float
));
predictor1
->
FeedPaddleTensors
({
t_img1
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor1
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
paddle_mobile
::
PaddleTensor
>
v1
;
// No need to initialize v
predictor1
->
FetchPaddleTensors
(
&
v1
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v1
.
size
()
<<
std
::
endl
;
for
(
int
fetchNum
=
0
;
fetchNum
<
v1
.
size
();
fetchNum
++
)
{
std
::
string
dumpName
=
"marker2_api_fetch_"
+
std
::
to_string
(
fetchNum
);
dump_stride
(
dumpName
,
v1
[
fetchNum
]);
}
}
/////////////////////////////////////
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
float
img_info
[
3
]
=
{
432
,
1280
,
1.0
f
};
int
img_length
=
432
*
1280
*
3
;
auto
img
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length
*
sizeof
(
float
)));
readStream
(
g_image
,
reinterpret_cast
<
char
*>
(
img
));
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img_info
,
t_img
;
t_img_info
.
dtypeid
=
typeid
(
float
);
t_img_info
.
layout
=
LAYOUT_HWC
;
t_img_info
.
shape
=
std
::
vector
<
int
>
({
1
,
3
});
t_img_info
.
name
=
"Image information"
;
t_img_info
.
data
.
Reset
(
img_info
,
3
*
sizeof
(
float
));
t_img
.
dtypeid
=
typeid
(
float
);
// quantize(&img, img_length);
// t_img.dtypeid = typeid(int8_t);
t_img
.
layout
=
LAYOUT_HWC
;
t_img
.
shape
=
std
::
vector
<
int
>
({
1
,
432
,
1280
,
3
});
t_img
.
name
=
"Image information"
;
t_img
.
data
.
Reset
(
img
,
img_length
*
sizeof
(
float
));
// t_img.data.Reset(img, img_length * sizeof(int8_t));
// for(int i = 0; i < 100; ++i){
predictor
->
FeedPaddleTensors
({
t_img_info
,
t_img
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
paddle_mobile
::
PaddleTensor
>
v
;
// No need to initialize v
predictor
->
FetchPaddleTensors
(
&
v
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v
.
size
()
<<
std
::
endl
;
for
(
int
fetchNum
=
0
;
fetchNum
<
v
.
size
();
fetchNum
++
)
{
std
::
string
dumpName
=
"marker_api_fetch_"
+
std
::
to_string
(
fetchNum
);
dump_stride
(
dumpName
,
v
[
fetchNum
]);
}
return
0
;
}
test/fpga/test_mobilenet_api.cpp
0 → 100644
浏览文件 @
d8d866dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using
namespace
paddle_mobile
;
// NOLINT
using
namespace
paddle_mobile
::
fpga
;
// NOLINT
static
const
char
*
g_image
=
"../images/mobilenet_txtdata/1.txt"
;
static
const
char
*
g_model
=
"../models/keycurve_l2_regular4_model/__model__"
;
static
const
char
*
g_param
=
"../models/keycurve_l2_regular4_model/model.params"
;
void
readStream
(
std
::
string
filename
,
float
*
buf
)
{
std
::
ifstream
in
;
in
.
open
(
filename
,
std
::
ios
::
in
);
if
(
!
in
.
is_open
())
{
std
::
cout
<<
"open File Failed."
<<
std
::
endl
;
return
;
}
int
i
=
0
;
while
(
!
in
.
eof
())
{
in
>>
buf
[
i
];
i
++
;
}
in
.
close
();
}
signed
char
float_to_int8
(
float
fdata
)
{
if
(
fdata
<
0.0
)
{
fdata
-=
0.5
;
}
else
{
fdata
+=
0.5
;
}
return
(
signed
char
)
fdata
;
}
void
quantize
(
float
**
data_in
,
int
data_size
)
{
float
*
tmp
=
*
data_in
;
signed
char
*
tmp_data
=
(
signed
char
*
)
fpga_malloc
(
data_size
*
sizeof
(
char
));
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
float_to_int8
((
*
data_in
)[
i
]
+
128
);
}
*
data_in
=
(
float
*
)
tmp_data
;
// NOLINT
fpga_free
(
tmp
);
}
void
convert_to_chw
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
,
float
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
void
dump_stride_float
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
data
.
data
());
int
c
=
(
input_tensor
.
shape
)[
1
];
int
h
=
(
input_tensor
.
shape
)[
2
];
int
w
=
(
input_tensor
.
shape
)[
3
];
int
n
=
(
input_tensor
.
shape
)[
0
];
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
c
*
h
*
w
*
sizeof
(
float
)));
convert_to_chw
(
&
data_ptr
,
c
,
h
,
w
,
data_tmp
);
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
datasize
=
abs
(
c
*
h
*
w
*
n
);
if
(
datasize
==
0
)
{
std
::
cout
<<
"wrong dump data size"
<<
std
::
endl
;
return
;
}
for
(
int
i
=
0
;
i
<
datasize
;
i
++
)
{
result
=
data_tmp
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
}
void
dump_stride
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
if
(
input_tensor
.
dtypeid
==
typeid
(
float
))
{
dump_stride_float
(
filename
,
input_tensor
);
}
else
{
std
::
cout
<<
"only support dumping float data"
<<
std
::
endl
;
}
}
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model
;
config
.
param_file
=
g_param
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
int
main
()
{
open_device
();
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
paddle_mobile
::
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
int
img_length
=
256
*
416
*
3
;
auto
img
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length
*
sizeof
(
float
)));
readStream
(
g_image
,
img
);
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img
;
t_img
.
dtype
=
FLOAT32
;
t_img
.
dtypeid
=
typeid
(
float
);
// quantize(&img, img_length);
// t_img.dtype = INT8;
// t_img.dtypeid = typeid(int8_t);
t_img
.
layout
=
LAYOUT_HWC
;
t_img
.
shape
=
std
::
vector
<
int
>
({
1
,
256
,
416
,
3
});
t_img
.
name
=
"Image information"
;
t_img
.
data
.
Reset
(
img
,
img_length
*
sizeof
(
float
));
// t_img.data.Reset(img, img_length * sizeof(int8_t));
predictor
->
FeedPaddleTensors
({
t_img
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
PaddleTensor
>
v
;
// No need to initialize v
predictor
->
FetchPaddleTensors
(
&
v
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v
.
size
()
<<
std
::
endl
;
for
(
int
fetchNum
=
0
;
fetchNum
<
v
.
size
();
fetchNum
++
)
{
std
::
string
dumpName
=
"mobilenet_api_fetch_"
+
std
::
to_string
(
fetchNum
);
dump_stride
(
dumpName
,
v
[
fetchNum
]);
}
return
0
;
}
test/fpga/test_rfcn_api.cpp
浏览文件 @
d8d866dd
...
...
@@ -12,18 +12,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
#include "../../src/io/paddle_inference_api.h"
#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif
#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
#endif
using
namespace
paddle_mobile
;
using
namespace
paddle_mobile
::
fpga
;
#include <string>
static
const
char
*
g_image
=
"../models/rfcn/data.bin"
;
static
const
char
*
g_model
=
"../models/rfcn/model"
;
static
const
char
*
g_param
=
"../models/rfcn/params"
;
void
readStream
(
std
::
string
filename
,
char
*
buf
)
{
std
::
ifstream
in
;
...
...
@@ -37,116 +38,128 @@ void readStream(std::string filename, char *buf) {
auto
length
=
in
.
tellg
();
// report location (this is the length)
in
.
seekg
(
0
,
std
::
ios
::
beg
);
// go back to the beginning
in
.
read
(
buf
,
length
);
DLOG
<<
length
;
in
.
close
();
}
void
convert_to_chw
(
int16_t
**
data_in
,
int
channel
,
int
height
,
int
width
,
int
num
,
int16_t
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
n
=
0
;
n
<
num
;
n
++
)
{
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
n
*
amount_per_side
*
channel
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
}
void
dump_stride_half
(
std
::
string
filename
,
Tensor
input_tensor
,
const
int
dumpnum
,
bool
use_chw
)
{
// bool use_chw = true;
if
(
input_tensor
.
dims
().
size
()
!=
4
)
return
;
int
c
=
(
input_tensor
.
dims
())[
1
];
int
h
=
(
input_tensor
.
dims
())[
2
];
int
w
=
(
input_tensor
.
dims
())[
3
];
int
n
=
(
input_tensor
.
dims
())[
0
];
auto
data_ptr
=
input_tensor
.
get_data
();
auto
*
data_ptr_16
=
reinterpret_cast
<
half
*>
(
data_ptr
);
auto
data_tmp
=
data_ptr_16
;
if
(
use_chw
)
{
data_tmp
=
reinterpret_cast
<
half
*>
(
malloc
(
n
*
c
*
h
*
w
*
sizeof
(
int16_t
)));
convert_to_chw
(
&
data_ptr_16
,
c
,
h
,
w
,
n
,
data_tmp
);
}
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
stride
=
input_tensor
.
numel
()
/
dumpnum
;
stride
=
stride
>
0
?
stride
:
1
;
for
(
int
i
=
0
;
i
<
input_tensor
.
numel
();
i
+=
stride
)
{
result
=
paddle_mobile
::
fpga
::
fp16_2_fp32
(
data_tmp
[
i
]);
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
if
(
data_tmp
!=
data_ptr_16
)
{
free
(
data_tmp
);
}
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model
;
config
.
param_file
=
g_param
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
void
dump_stride_float
(
std
::
string
filename
,
Tensor
input_tensor
,
const
int
dumpnum
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
get_data
());
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
stride
=
input_tensor
.
numel
()
/
dumpnum
;
stride
=
stride
>
0
?
stride
:
1
;
for
(
int
i
=
0
;
i
<
input_tensor
.
numel
();
i
+=
stride
)
{
result
=
data_ptr
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
PaddleMobileConfig
GetConfig1
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
model_dir
=
"../models/resnet50"
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
quantification
=
false
;
return
config
;
}
void
dump_stride
(
std
::
string
filename
,
Tensor
input_tensor
,
const
int
dumpnum
,
bool
use_chw
)
{
static
int
i
=
0
;
if
(
input_tensor
.
numel
()
==
0
)
{
return
;
int
main
()
{
open_device
();
PaddleMobileConfig
config1
=
GetConfig1
();
auto
predictor1
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config1
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
int
img_length1
=
224
*
224
*
3
;
auto
img1
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length1
*
sizeof
(
float
)));
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img1
;
t_img1
.
dtypeid
=
typeid
(
float
);
t_img1
.
layout
=
LAYOUT_HWC
;
t_img1
.
shape
=
std
::
vector
<
int
>
({
1
,
224
,
224
,
3
});
t_img1
.
name
=
"Image information"
;
t_img1
.
data
.
Reset
(
img1
,
img_length1
*
sizeof
(
float
));
predictor1
->
FeedPaddleTensors
({
t_img1
});
predictor1
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
PaddleTensor
>
v1
;
// No need to initialize v
predictor1
->
FetchPaddleTensors
(
&
v1
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v1
.
size
()
<<
std
::
endl
;
std
::
cout
<<
"out[0] length "
<<
v1
[
0
].
data
.
length
()
<<
std
::
endl
;
////////////////////////////
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
float
img_info
[
3
]
=
{
432
,
1280
,
1.0
f
};
int
img_length
=
432
*
1280
*
3
;
auto
img
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length
*
sizeof
(
float
)));
readStream
(
g_image
,
reinterpret_cast
<
char
*>
(
img
));
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img_info
,
t_img
;
t_img
.
dtypeid
=
typeid
(
float
);
t_img_info
.
layout
=
LAYOUT_HWC
;
t_img_info
.
shape
=
std
::
vector
<
int
>
({
1
,
3
});
t_img_info
.
name
=
"Image information"
;
t_img_info
.
data
.
Reset
(
img_info
,
3
*
sizeof
(
float
));
t_img
.
dtypeid
=
typeid
(
float
);
t_img
.
layout
=
LAYOUT_HWC
;
t_img
.
shape
=
std
::
vector
<
int
>
({
1
,
432
,
1280
,
3
});
t_img
.
name
=
"Image information"
;
t_img
.
data
.
Reset
(
img
,
img_length
*
sizeof
(
float
));
predictor
->
FeedPaddleTensors
({
t_img_info
,
t_img
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
PaddleTensor
>
v
;
// No need to initialize v
predictor
->
FetchPaddleTensors
(
&
v
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v
.
size
()
<<
std
::
endl
;
std
::
cout
<<
"out[0] length "
<<
v
[
0
].
data
.
length
()
<<
std
::
endl
;
std
::
cout
<<
"out[1] length "
<<
v
[
1
].
data
.
length
()
<<
std
::
endl
;
std
::
cout
<<
"out[2] length "
<<
v
[
2
].
data
.
length
()
<<
std
::
endl
;
auto
post_nms
=
v
[
0
].
data
.
length
()
/
sizeof
(
float
)
/
8
;
for
(
int
num
=
0
;
num
<
post_nms
;
num
++
)
{
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
auto
p
=
reinterpret_cast
<
float
*>
(
v
[
0
].
data
.
data
());
std
::
cout
<<
p
[
num
*
8
+
i
]
<<
std
::
endl
;
}
}
if
(
input_tensor
.
type
()
==
typeid
(
float
))
{
DLOG
<<
"op: "
<<
i
++
<<
", float data "
<<
input_tensor
.
numel
();
dump_stride_float
(
filename
,
input_tensor
,
dumpnum
);
}
else
{
DLOG
<<
"op: "
<<
i
++
<<
", half data "
<<
input_tensor
.
numel
();
dump_stride_half
(
filename
,
input_tensor
,
dumpnum
,
use_chw
);
for
(
int
num
=
0
;
num
<
post_nms
;
num
++
)
{
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
auto
p
=
reinterpret_cast
<
float
*>
(
v
[
1
].
data
.
data
());
std
::
cout
<<
p
[
num
*
8
+
i
]
<<
std
::
endl
;
}
}
DLOG
<<
"dump input address: "
<<
input_tensor
.
get_data
();
}
static
const
char
*
g_rfcn_combine
=
"../models/rfcn"
;
static
const
char
*
g_image_src_float
=
"../models/rfcn/data.bin"
;
int
main
()
{
paddle_mobile
::
fpga
::
open_device
();
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
FPGA
>
paddle_mobile
;
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_rfcn_combine
)
+
"/model"
,
std
::
string
(
g_rfcn_combine
)
+
"/params"
,
true
,
false
,
1
,
true
))
{
float
img_info
[
3
]
=
{
768
,
1536
,
768.0
f
/
960.0
f
};
auto
img
=
reinterpret_cast
<
float
*>
(
fpga
::
fpga_malloc
(
768
*
1536
*
3
*
sizeof
(
float
)));
readStream
(
g_image_src_float
,
reinterpret_cast
<
char
*>
(
img
));
std
::
vector
<
void
*>
v
(
3
,
nullptr
);
paddle_mobile
.
FeedData
(
std
::
vector
<
void
*>
({
img_info
,
img
}));
paddle_mobile
.
Predict_To
(
-
1
);
for
(
int
i
=
65
;
i
<
69
;
i
++
)
{
auto
tensor_ptr
=
paddle_mobile
.
FetchResult
(
i
);
std
::
string
saveName
=
"rfcn_"
+
std
::
to_string
(
i
);
paddle_mobile
::
fpga
::
fpga_invalidate
((
*
tensor_ptr
).
get_data
(),
tensor_ptr
->
numel
()
*
sizeof
(
float
));
dump_stride
(
saveName
,
(
*
tensor_ptr
),
tensor_ptr
->
numel
(),
true
);
for
(
int
num
=
0
;
num
<
post_nms
;
num
++
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
auto
p
=
reinterpret_cast
<
float
*>
(
v
[
2
].
data
.
data
());
std
::
cout
<<
p
[
num
*
4
+
i
]
<<
std
::
endl
;
}
// paddle_mobile.GetResults(&v);
DLOG
<<
"Computation done"
;
fpga
::
fpga_free
(
img
);
}
std
::
cout
<<
"Finish getting vector values"
<<
std
::
endl
;
return
0
;
}
test/fpga/test_yolo_api.cpp
0 → 100644
浏览文件 @
d8d866dd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"
using
namespace
paddle_mobile
;
// NOLINT
using
namespace
paddle_mobile
::
fpga
;
// NOLINT
static
const
char
*
g_image
=
"../images/yolo_test_txtimg/1.txt"
;
static
const
char
*
g_model
=
"../models/yolo_bn_l2_model/__model__"
;
static
const
char
*
g_param
=
"../models/yolo_bn_l2_model/model.params"
;
void
readStream
(
std
::
string
filename
,
float
*
buf
)
{
std
::
ifstream
in
;
in
.
open
(
filename
,
std
::
ios
::
in
);
if
(
!
in
.
is_open
())
{
std
::
cout
<<
"open File Failed."
<<
std
::
endl
;
return
;
}
int
i
=
0
;
while
(
!
in
.
eof
())
{
in
>>
buf
[
i
];
i
++
;
}
in
.
close
();
}
signed
char
float_to_int8
(
float
fdata
)
{
if
(
fdata
<
0.0
)
{
fdata
-=
0.5
;
}
else
{
fdata
+=
0.5
;
}
return
(
signed
char
)
fdata
;
}
void
quantize
(
float
**
data_in
,
int
data_size
)
{
float
*
tmp
=
*
data_in
;
signed
char
*
tmp_data
=
(
signed
char
*
)
fpga_malloc
(
data_size
*
sizeof
(
char
));
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
float_to_int8
((
*
data_in
)[
i
]
+
128
);
}
*
data_in
=
(
float
*
)
tmp_data
;
// NOLINT
fpga_free
(
tmp
);
}
void
convert_to_chw
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
,
float
*
data_tmp
)
{
int64_t
amount_per_side
=
width
*
height
;
for
(
int
h
=
0
;
h
<
height
;
h
++
)
{
for
(
int
w
=
0
;
w
<
width
;
w
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
*
(
data_tmp
+
c
*
amount_per_side
+
width
*
h
+
w
)
=
*
((
*
data_in
)
++
);
}
}
}
}
void
dump_stride_float
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
auto
data_ptr
=
reinterpret_cast
<
float
*>
(
input_tensor
.
data
.
data
());
int
c
=
(
input_tensor
.
shape
)[
1
];
int
h
=
(
input_tensor
.
shape
)[
2
];
int
w
=
(
input_tensor
.
shape
)[
3
];
int
n
=
(
input_tensor
.
shape
)[
0
];
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
c
*
h
*
w
*
sizeof
(
float
)));
convert_to_chw
(
&
data_ptr
,
c
,
h
,
w
,
data_tmp
);
std
::
ofstream
out
(
filename
.
c_str
());
float
result
=
0
;
int
datasize
=
abs
(
c
*
h
*
w
*
n
);
if
(
datasize
==
0
)
{
std
::
cout
<<
"wrong dump data size"
<<
std
::
endl
;
return
;
}
for
(
int
i
=
0
;
i
<
datasize
;
i
++
)
{
result
=
data_tmp
[
i
];
out
<<
result
<<
std
::
endl
;
}
out
.
close
();
}
void
dump_stride
(
std
::
string
filename
,
PaddleTensor
input_tensor
)
{
if
(
input_tensor
.
dtypeid
==
typeid
(
float
))
{
dump_stride_float
(
filename
,
input_tensor
);
}
else
{
std
::
cout
<<
"only support dumping float data"
<<
std
::
endl
;
}
}
PaddleMobileConfig
GetConfig
()
{
PaddleMobileConfig
config
;
config
.
precision
=
PaddleMobileConfig
::
FP32
;
config
.
device
=
PaddleMobileConfig
::
kFPGA
;
config
.
prog_file
=
g_model
;
config
.
param_file
=
g_param
;
config
.
thread_num
=
1
;
config
.
batch_size
=
1
;
config
.
optimize
=
true
;
config
.
lod_mode
=
true
;
config
.
quantification
=
false
;
return
config
;
}
int
main
()
{
open_device
();
PaddleMobileConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
PaddleMobileConfig
,
PaddleEngineKind
::
kPaddleMobile
>
(
config
);
std
::
cout
<<
"Finishing loading model"
<<
std
::
endl
;
int
img_length
=
256
*
416
*
3
;
auto
img
=
reinterpret_cast
<
float
*>
(
fpga_malloc
(
img_length
*
sizeof
(
float
)));
readStream
(
g_image
,
img
);
std
::
cout
<<
"Finishing initializing data"
<<
std
::
endl
;
struct
PaddleTensor
t_img
;
// t_img.dtype = FLOAT32;
// t_img.dtypeid = typeid(float);
quantize
(
&
img
,
img_length
);
t_img
.
dtype
=
INT8
;
t_img
.
dtypeid
=
typeid
(
int8_t
);
t_img
.
layout
=
LAYOUT_HWC
;
t_img
.
shape
=
std
::
vector
<
int
>
({
1
,
256
,
416
,
3
});
t_img
.
name
=
"Image information"
;
// t_img.data.Reset(img, img_length * sizeof(float));
t_img
.
data
.
Reset
(
img
,
img_length
*
sizeof
(
int8_t
));
predictor
->
FeedPaddleTensors
({
t_img
});
std
::
cout
<<
"Finishing feeding data "
<<
std
::
endl
;
predictor
->
Predict_From_To
(
0
,
-
1
);
std
::
cout
<<
"Finishing predicting "
<<
std
::
endl
;
std
::
vector
<
PaddleTensor
>
v
;
// No need to initialize v
predictor
->
FetchPaddleTensors
(
&
v
);
// Old data in v will be cleared
std
::
cout
<<
"Output number is "
<<
v
.
size
()
<<
std
::
endl
;
for
(
int
fetchNum
=
0
;
fetchNum
<
v
.
size
();
fetchNum
++
)
{
std
::
string
dumpName
=
"yolo_api_fetch_"
+
std
::
to_string
(
fetchNum
);
dump_stride
(
dumpName
,
v
[
fetchNum
]);
}
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录