Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d5f59eaa
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5f59eaa
编写于
3月 22, 2019
作者:
H
Houjiang Chen
提交者:
GitHub
3月 22, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1528 from hjchen2/backup
Fix multi-threads sgemm and conv/add/bn/relu fusion bugs
上级
b9375d24
288148fe
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
26 addition
and
6 deletion
+26
-6
src/framework/cl/cl_tensor.h
src/framework/cl/cl_tensor.h
+16
-0
src/framework/context.h
src/framework/context.h
+2
-1
src/operators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
...rators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
+4
-1
src/operators/math/gemm/executor.h
src/operators/math/gemm/executor.h
+4
-4
未找到文件。
src/framework/cl/cl_tensor.h
浏览文件 @
d5f59eaa
...
@@ -137,14 +137,18 @@ class CLTensor : TensorBase {
...
@@ -137,14 +137,18 @@ class CLTensor : TensorBase {
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_ONLY
|
CL_MEM_COPY_HOST_PTR
,
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_ONLY
|
CL_MEM_COPY_HOST_PTR
,
size
,
reinterpret_cast
<
void
*>
(
input
),
NULL
)),
size
,
reinterpret_cast
<
void
*>
(
input
),
NULL
)),
size_
(
size
),
size_
(
size
),
capatity_
(
size
),
type_
(
type
),
type_
(
type
),
context_
(
context
),
command_queue_
(
command_queue
)
{}
command_queue_
(
command_queue
)
{}
PlaceholderImpl
(
size_t
size
,
std
::
type_index
type
,
cl_context
context
,
PlaceholderImpl
(
size_t
size
,
std
::
type_index
type
,
cl_context
context
,
cl_command_queue
command_queue
)
cl_command_queue
command_queue
)
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_WRITE
,
size
,
NULL
,
NULL
)),
:
ptr_
(
clCreateBuffer
(
context
,
CL_MEM_READ_WRITE
,
size
,
NULL
,
NULL
)),
size_
(
size
),
size_
(
size
),
capatity_
(
size
),
type_
(
type
),
type_
(
type
),
context_
(
context
),
command_queue_
(
command_queue
)
{}
command_queue_
(
command_queue
)
{}
virtual
size_t
size
()
const
{
return
size_
;
}
virtual
size_t
size
()
const
{
return
size_
;
}
...
@@ -155,13 +159,25 @@ class CLTensor : TensorBase {
...
@@ -155,13 +159,25 @@ class CLTensor : TensorBase {
virtual
void
set_type
(
std
::
type_index
type
)
{
type_
=
type
;
}
virtual
void
set_type
(
std
::
type_index
type
)
{
type_
=
type
;
}
virtual
void
resize
(
size_t
size
)
{
if
(
size
>
capatity_
)
{
capatity_
=
size
;
ptr_
.
reset
(
clCreateBuffer
(
context_
,
CL_MEM_READ_WRITE
,
capatity_
,
NULL
,
NULL
));
}
size_
=
size
;
}
std
::
unique_ptr
<
_cl_mem
,
CLMemDeleter
>
ptr_
;
std
::
unique_ptr
<
_cl_mem
,
CLMemDeleter
>
ptr_
;
size_t
size_
;
size_t
size_
;
size_t
capatity_
;
/* the current type of memory */
/* the current type of memory */
std
::
type_index
type_
;
std
::
type_index
type_
;
cl_context
context_
;
cl_command_queue
command_queue_
;
cl_command_queue
command_queue_
;
};
};
};
};
...
...
src/framework/context.h
浏览文件 @
d5f59eaa
...
@@ -68,7 +68,8 @@ struct CPUContext {
...
@@ -68,7 +68,8 @@ struct CPUContext {
};
};
inline
void
set_global_num_threads
(
int
threads
)
{
inline
void
set_global_num_threads
(
int
threads
)
{
CPUContext
::
Context
()
->
set_num_threads
(
threads
);
// CPUContext::Context()->set_num_threads(threads);
CPUContext
::
Context
()
->
num_threads
=
threads
;
}
}
inline
int
get_global_num_threads
()
{
inline
int
get_global_num_threads
()
{
...
...
src/operators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
浏览文件 @
d5f59eaa
...
@@ -30,12 +30,14 @@ bool ConvAddBNReluKernel<CPU, float>::Init(
...
@@ -30,12 +30,14 @@ bool ConvAddBNReluKernel<CPU, float>::Init(
const
Tensor
*
variance
=
param
->
InputVariance
();
const
Tensor
*
variance
=
param
->
InputVariance
();
const
Tensor
*
scale
=
param
->
InputScale
();
const
Tensor
*
scale
=
param
->
InputScale
();
const
Tensor
*
bias
=
param
->
InputBias
();
const
Tensor
*
bias
=
param
->
InputBias
();
const
Tensor
*
bias1
=
param
->
Bias
();
const
float
epsilon
=
param
->
Epsilon
();
const
float
epsilon
=
param
->
Epsilon
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
bias1_ptr
=
bias1
->
data
<
float
>
();
const
int
C
=
mean
->
numel
();
const
int
C
=
mean
->
numel
();
float
inv_std_ptr
[
C
];
float
inv_std_ptr
[
C
];
...
@@ -52,7 +54,8 @@ bool ConvAddBNReluKernel<CPU, float>::Init(
...
@@ -52,7 +54,8 @@ bool ConvAddBNReluKernel<CPU, float>::Init(
auto
new_bias_ptr
=
new_bias
->
mutable_data
<
float
>
({
C
});
auto
new_bias_ptr
=
new_bias
->
mutable_data
<
float
>
({
C
});
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
+
(
bias1_ptr
[
i
]
-
mean_ptr
[
i
])
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
}
}
param
->
SetNewScale
(
new_scale
);
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
param
->
SetNewBias
(
new_bias
);
...
...
src/operators/math/gemm/executor.h
浏览文件 @
d5f59eaa
...
@@ -107,8 +107,8 @@ class GemmExecutor : public Executor {
...
@@ -107,8 +107,8 @@ class GemmExecutor : public Executor {
// gettimeofday(&tv_begin,NULL);
// gettimeofday(&tv_begin,NULL);
if
(
M_
>
N_
)
{
if
(
M_
>
N_
)
{
int
nblock
=
CeilDiv
(
N_
,
Strategy
::
out_width
())
*
Strategy
::
out_width
();
int
nblock
=
CeilDiv
(
N_
,
Strategy
::
out_width
())
*
Strategy
::
out_width
();
lhs_worksize_
=
sizeof
(
Itype
)
*
lhs_tile_num_
*
K_
;
lhs_worksize_
=
sizeof
(
Itype
)
*
lhs_tile_num_
*
K_
*
num_threads_
;
rhs_worksize_
=
sizeof
(
Itype
)
*
K_
*
nblock
*
num_threads_
;
rhs_worksize_
=
sizeof
(
Itype
)
*
K_
*
nblock
;
out_worksize_
=
sizeof
(
Otype
)
*
lhs_tile_num_
*
nblock
*
num_threads_
;
out_worksize_
=
sizeof
(
Otype
)
*
lhs_tile_num_
*
nblock
*
num_threads_
;
ldc_
=
nblock
;
ldc_
=
nblock
;
}
else
{
}
else
{
...
@@ -133,7 +133,7 @@ class GemmExecutor : public Executor {
...
@@ -133,7 +133,7 @@ class GemmExecutor : public Executor {
if
(
M_
>
N_
)
{
if
(
M_
>
N_
)
{
strategy_
.
pack_rhs
(
K_
,
N_
,
B
,
ldb
,
rhs_workspace_
,
true
);
strategy_
.
pack_rhs
(
K_
,
N_
,
B
,
ldb
,
rhs_workspace_
,
true
);
#pragma omp parallel for
if (M_ > 128)
#pragma omp parallel for
for
(
int
lhs_block
=
0
;
lhs_block
<
M_
;
lhs_block
+=
lhs_tile_num_
)
{
for
(
int
lhs_block
=
0
;
lhs_block
<
M_
;
lhs_block
+=
lhs_tile_num_
)
{
int
lhs_range
=
std
::
min
(
M_
-
lhs_block
,
lhs_tile_num_
);
int
lhs_range
=
std
::
min
(
M_
-
lhs_block
,
lhs_tile_num_
);
#ifdef _OPENMP
#ifdef _OPENMP
...
@@ -165,7 +165,7 @@ class GemmExecutor : public Executor {
...
@@ -165,7 +165,7 @@ class GemmExecutor : public Executor {
}
else
{
}
else
{
strategy_
.
pack_lhs
(
M_
,
K_
,
A
,
lda
,
lhs_workspace_
,
true
);
strategy_
.
pack_lhs
(
M_
,
K_
,
A
,
lda
,
lhs_workspace_
,
true
);
#pragma omp parallel for
if (N_ > 128)
#pragma omp parallel for
for
(
int
rhs_block
=
0
;
rhs_block
<
N_
;
rhs_block
+=
rhs_tile_num_
)
{
for
(
int
rhs_block
=
0
;
rhs_block
<
N_
;
rhs_block
+=
rhs_tile_num_
)
{
int
rhs_range
=
std
::
min
(
N_
-
rhs_block
,
rhs_tile_num_
);
int
rhs_range
=
std
::
min
(
N_
-
rhs_block
,
rhs_tile_num_
);
#ifdef _OPENMP
#ifdef _OPENMP
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录