提交 d52ad156 编写于 作者: L liuruilong

add cl files

上级 bdd97ea6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/cl/cl_engine.h"
#include <CL/cl.h>
#include <cstdlib>
#include <cstring>
namespace paddle_mobile {
namespace framework {
bool CLEngine::Init() {
cl_int status;
setPlatform();
setClDeviceId();
setClContext();
setClCommandQueue();
std::string filename = "./HelloWorld_Kernel.cl";
loadKernelFromFile(filename.c_str());
buildProgram();
initialized_ = true;
}
CLEngine *CLEngine::Instance() {
static CLEngine cl_engine_;
return &cl_engine_;
}
std::unique_ptr<_cl_kernel, clKernel_deleter> CLEngine::GSetKernel(
const std::string &kernel_name) {
std::unique_ptr<_cl_kernel, clKernel_deleter> kernel(
clCreateKernel(program_.get(), kernel_name.c_str(), NULL));
return std::move(kernel);
}
bool CLEngine::SetClCommandQueue() {
cl_int status;
command_queue_.reset(
clCreateCommandQueue(context_.get(), devices_[0], 0, &status));
return true;
}
bool CLEngine::SetPlatform() {
platform_ = NULL; // the chosen platform
cl_uint numPlatforms; // the NO. of platforms
cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms);
/**For clarity, choose the first available platform. */
if (numPlatforms > 0) {
cl_platform_id *platforms = reinterpret_cast<cl_platform_id *>(
malloc(numPlatforms * sizeof(cl_platform_id)));
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
platform_ = platforms[0];
free(platforms);
return true;
} else {
return false;
}
}
bool CLEngine::SetClContext() {
context_.reset(clCreateContext(NULL, 1, devices_, NULL, NULL, NULL));
return true;
}
bool CLEngine::SetClDeviceId() {
cl_uint numDevices = 0;
devices_ = NULL;
cl_int status =
clGetDeviceIDs(platform_, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);
if (numDevices > 0) {
std::cout << numDevices << std::endl;
devices_ = reinterpret_cast<cl_platform_id *>(
malloc(numDevices * sizeof(cl_device_id)));
status = clGetDeviceIDs(platform_, CL_DEVICE_TYPE_GPU, numDevices, devices_,
NULL);
return true;
}
return false;
}
bool CLEngine::LoadKernelFromFile(const char *kernel_file) {
size_t size;
char *str;
std::fstream f(kernel_file, (std::fstream::in | std::fstream::binary));
if (!f.is_open()) {
return false;
}
size_t fileSize;
f.seekg(0, std::fstream::end);
size = fileSize = (size_t)f.tellg();
f.seekg(0, std::fstream::beg);
str = new char[size + 1];
if (!str) {
f.close();
return 0;
}
f.read(str, fileSize);
f.close();
str[size] = '\0';
const char *source = str;
size_t sourceSize[] = {strlen(source)};
program_.reset(
clCreateProgramWithSource(context_.get(), 1, &source, sourceSize, NULL));
return true;
}
bool CLEngine::BuildProgram() {
cl_int status;
status = clBuildProgram(program_.get(), 0, 0, "-cl-fast-relaxed-math", 0, 0);
return true;
}
} // namespace framework
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <CL/cl.h>
// #include "CL/cl.h"
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
namespace paddle_mobile {
namespace framework {
struct CLContext {};
struct CLKernelDeleter {
template <class T>
void operator()(T *clKernelObj) {
clReleaseKernel(clKernelObj);
}
};
struct CLMemDeleter {
template <class T>
void operator()(T *clMemObj) {
clReleaseMemObject(clMemObj);
}
};
struct CLCommQueueDeleter {
template <class T>
void operator()(T *clQueueObj) {
clReleaseCommandQueue(clQueueObj);
}
};
struct CLContextDeleter {
template <class T>
void operator()(T *clContextObj) {
clReleaseContext(clContextObj);
}
};
struct CLProgramDeleter {
template <class T>
void operator()(T *clProgramObj) {
clReleaseProgram(clProgramObj);
}
};
class CLEngine {
public:
static CLEngine *Instance();
bool Init();
std::unique_ptr<_cl_kernel, clKernel_deleter> GetKernel(
const std::string &kernel_name);
const cl_context GetContext() { return context_.get(); }
const cl_program GetProgram() { return program_.get(); }
const cl_command_queue GetCommandQueue() { return command_queue_.get(); }
private:
CLEngine() { initialized_ = false; }
bool SetPlatform();
bool SetClDeviceId();
bool SetClContext();
bool SetClCommandQueue();
bool LoadKernelFromFile(const char *kernel_file);
bool BuildProgram();
bool initialized_;
cl_platform_id platform_;
cl_device_id *devices_;
std::unique_ptr<_cl_context, CLContextDeleter> context_;
std::unique_ptr<_cl_command_queue, CLCommQueueDeleter> command_queue_;
std::unique_ptr<_cl_program, clProgram_deleter> program_;
};
} // namespace framework
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "framework/tensor_base.h"
namespace paddle_mobile {
namespace framework {
class CLTensor {
public:
CLTensor() {}
/*! Resize the dimensions of the memory block. */
inline CLTensor &Resize(const DDim &dims) {
dims_ = dims;
return *this;
}
// template<typename T>
// inline T *mutable_with_data(void *data) {
// int64_t size = numel() * sizeof(float);
// holder_.reset(new PlaceholderImpl(size, data, typeid(T)));
// return reinterpret_cast<T *>(reinterpret_cast<void *>(
// reinterpret_cast<uintptr_t>(holder_->ptr())));
// }
inline void *mutable_data(std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
PADDLE_MOBILE_ENFORCE(numel() >= 0, "the Tensor's numel must >=0.")
int64_t size = numel() * SizeOfType(type);
if (holder_ == nullptr || holder_->size() < size + offset_) {
holder_.reset(new PlaceholderImpl(size, type));
offset_ = 0;
}
return reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T>
inline T *mutable_data() {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T *>(mutable_data(typeid(T)));
}
/**
* @brief Return a pointer to mutable memory block.
*
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
*
* @note If not exist, then allocation.
*/
template <typename T>
inline T *mutable_data(DDim dims) {
static_assert(std::is_pod<T>::value, "T must be POD");
Resize(dims);
return mutable_data<T>();
}
private:
/*
* virtual ~Placeholder() = default;
virtual void *ptr() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
virtual void set_type(std::type_index type) = 0;
* */
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(size_t size, void *input, std::type_index type)
: ptr_(clCreateBuffer(CLEngine::instance()->getContext(),
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, size,
reinterpret_cast<void *>(input), NULL)),
size_(size),
type_(type) {}
PlaceholderImpl(size_t size, std::type_index type)
: ptr_(clCreateBuffer(CLEngine::instance()->getContext(),
CL_MEM_READ_WRITE, size, NULL, NULL)),
size_(size),
type_(type) {}
virtual size_t size() const { return size_; }
virtual void *ptr() const { return static_cast<void *>(ptr_.get()); }
virtual std::type_index type() const { return type_; }
virtual void set_type(std::type_index type) { type_ = type; }
std::unique_ptr<_cl_mem, clMem_deleter> ptr_;
size_t size_;
/* the current type of memory */
std::type_index type_;
};
};
} // namespace framework
} // namespace paddle_mobile
......@@ -24,65 +24,24 @@ limitations under the License. */
#include <vector>
#include "common/enforce.h"
#include "common/types.h"
#include "framework/data_layout.h"
#include "framework/ddim.h"
#include "framework/tensor_base.h"
#include "memory/t_malloc.h"
namespace paddle_mobile {
namespace framework {
template <typename... T>
struct SizeOfTypeFunctor;
template <typename T>
struct SizeOfTypeFunctor<T> {
size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T);
} else {
return 0UL;
}
}
};
template <>
struct SizeOfTypeFunctor<> {
size_t operator()(std::type_index type) const { return 0UL; }
};
template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> {
size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type);
if (head_size != 0) {
return head_size;
}
SizeOfTypeFunctor<TAIL...> tail;
return tail(type);
}
};
static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int8_t, int, half, float, double, int16_t, int64_t, bool,
size_t>
functor;
size_t size = functor(type);
PADDLE_MOBILE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name());
return size;
}
class LoDTensor;
class Tensor {
class Tensor : public TensorBase {
public:
Tensor() : offset_(0) {}
Tensor() {}
template <typename T>
Tensor(std::vector<T> input, DDim ddim) : offset_(0) {
Tensor(std::vector<T> input, DDim ddim) {
PADDLE_MOBILE_ENFORCE(
input.size() == framework::product(ddim),
"input vector'length should be equal to tensor's length");
auto input_ptr = mutable_data<T>(ddim);
for (int i = 0; i < input.size(); ++i) {
input_ptr[i] = input[i];
......@@ -95,46 +54,6 @@ class Tensor {
this->offset_ = inTensor.offset_;
}
/*! Return a pointer to mutable memory block. */
template <typename T>
inline T *data() {
check_memory_size();
PADDLE_MOBILE_ENFORCE(
(std::is_same<T, void>::value ||
holder_->type().hash_code() == typeid(T).hash_code()),
"Tensor holds the wrong type, it holds %s",
this->holder_->type().name());
return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
}
/*! Return a pointer to constant memory block. */
template <typename T>
inline const T *data() const {
check_memory_size();
PADDLE_MOBILE_ENFORCE(
(std::is_same<T, void>::value ||
holder_->type().hash_code() == typeid(T).hash_code()),
"Tensor holds the wrong type, it holds %s ,requested:%s",
this->holder_->type().name(), typeid(T).name());
return reinterpret_cast<const T *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
inline bool IsInitialized() const { return holder_ != nullptr; }
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T>
inline T *mutable_data() {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T *>(mutable_data(typeid(T)));
}
#ifdef PADDLE_MOBILE_DEBUG
template <typename T>
inline void dump(std::string filename) const {
......@@ -151,6 +70,21 @@ class Tensor {
}
#endif
/*! Resize the dimensions of the memory block. */
inline Tensor &Resize(const DDim &dims) {
dims_ = dims;
return *this;
}
/*! The internal of two tensors share the same memory block. */
inline Tensor &ShareDataWith(const Tensor &src) {
src.check_memory_size();
if (holder_.get() != src.holder_.get()) {
*this = src;
}
return *this;
}
inline void *mutable_data(std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
......@@ -165,6 +99,16 @@ class Tensor {
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T>
inline T *mutable_data() {
static_assert(std::is_pod<T>::value, "T must be POD");
return reinterpret_cast<T *>(mutable_data(typeid(T)));
}
/**
* @brief Return a pointer to mutable memory block.
*
......@@ -180,27 +124,6 @@ class Tensor {
return mutable_data<T>();
}
/*! Return the dimensions of the memory block. */
inline const DDim &dims() const { return dims_; }
/*! Return the numel of the memory block. */
inline int64_t numel() const { return product(dims_); }
/*! Resize the dimensions of the memory block. */
inline Tensor &Resize(const DDim &dims) {
dims_ = dims;
return *this;
}
/*! The internal of two tensors share the same memory block. */
inline Tensor &ShareDataWith(const Tensor &src) {
src.check_memory_size();
if (holder_.get() != src.holder_.get()) {
*this = src;
}
return *this;
}
/**
* @brief Return a sub-tensor of the given tensor.
*
......@@ -234,44 +157,7 @@ class Tensor {
}
}
std::type_index type() const {
PADDLE_MOBILE_ENFORCE(
holder_ != nullptr,
"Tensor not initialized yet when Tensor::type() is called.")
return holder_->type();
}
// memory size returns the holding memory size in byte.
size_t memory_size() const {
return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}
inline void check_memory_size() const {
PADDLE_MOBILE_ENFORCE(
holder_ != nullptr,
"Tensor holds no memory. Call Tensor::mutable_data first.");
PADDLE_MOBILE_ENFORCE(numel() * SizeOfType(type()) <= memory_size(),
"Tensor's dims_ is out of bound. ");
}
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a
* template
* parameter of Variable.
*/
struct Placeholder {
virtual ~Placeholder() = default;
virtual void *ptr() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
virtual void set_type(std::type_index type) = 0;
};
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(size_t size, std::type_index type)
: ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
......@@ -299,30 +185,12 @@ class Tensor {
std::type_index type_;
};
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
/**
* @brief points to elements dimensions.
*
* @note dims_ do not indicate the memory block size.
*/
DDim dims_;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
* @note Some of them may be slices of the others. So the offset_
* is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really
* begins.
*/
size_t offset_;
#ifdef PADDLE_MOBILE_FPGA
public:
inline void reset_data_ptr(void *p) {
((PlaceholderImpl *)(holder_.get()))->ptr_.reset((uint8_t *)p);
(reinterpret_cast<PlaceholderImpl *>(holder_.get()))
->ptr_.reset(reinterpret_cast<uint8_t *>(p));
}
float scale[2]; // scale[0]= MAX/127.0, scale[1]= 127.0/MAX
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <type_traits>
#include <typeindex>
#include "common/enforce.h"
#include "common/types.h"
#include "framework/ddim.h"
namespace paddle_mobile {
namespace framework {
template <typename... T>
struct SizeOfTypeFunctor;
template <typename T>
struct SizeOfTypeFunctor<T> {
size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T);
} else {
return 0UL;
}
}
};
template <>
struct SizeOfTypeFunctor<> {
size_t operator()(std::type_index type) const { return 0UL; }
};
template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> {
size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type);
if (head_size != 0) {
return head_size;
}
SizeOfTypeFunctor<TAIL...> tail;
return tail(type);
}
};
static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int8_t, int, half, float, double, int16_t, int64_t, bool,
size_t>
functor;
size_t size = functor(type);
PADDLE_MOBILE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name());
return size;
}
class TensorBase {
public:
virtual inline TensorBase &Resize(const DDim &dims) = 0;
inline bool IsInitialized() const { return holder_ != nullptr; }
virtual inline void *mutable_data(std::type_index type) = 0;
/*! Return a pointer to mutable memory block. */
template <typename T>
inline T *data() {
check_memory_size();
PADDLE_MOBILE_ENFORCE(
(std::is_same<T, void>::value ||
holder_->type().hash_code() == typeid(T).hash_code()),
"Tensor holds the wrong type, it holds %s",
this->holder_->type().name());
return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
}
/*! Return a pointer to constant memory block. */
template <typename T>
inline const T *data() const {
check_memory_size();
PADDLE_MOBILE_ENFORCE(
(std::is_same<T, void>::value ||
holder_->type().hash_code() == typeid(T).hash_code()),
"Tensor holds the wrong type, it holds %s ,requested:%s",
this->holder_->type().name(), typeid(T).name());
return reinterpret_cast<const T *>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
/*! Return the dimensions of the memory block. */
inline const DDim &dims() const { return dims_; }
/*! Return the numel of the memory block. */
inline int64_t numel() const { return product(dims_); }
std::type_index type() const {
PADDLE_MOBILE_ENFORCE(
holder_ != nullptr,
"Tensor not initialized yet when Tensor::type() is called.")
return holder_->type();
}
// memory size returns the holding memory size in byte.
size_t memory_size() const {
return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}
inline void check_memory_size() const {
PADDLE_MOBILE_ENFORCE(
holder_ != nullptr,
"Tensor holds no memory. Call Tensor::mutable_data first.");
PADDLE_MOBILE_ENFORCE(numel() * SizeOfType(type()) <= memory_size(),
"Tensor's dims_ is out of bound. ");
}
protected:
/**
* @note Placeholder hides type T, so it doesn't appear as a
* template
* parameter of Variable.
*/
struct Placeholder {
virtual ~Placeholder() = default;
virtual void *ptr() const = 0;
virtual size_t size() const = 0;
virtual std::type_index type() const = 0;
virtual void set_type(std::type_index type) = 0;
};
/**
* @brief points to elements dimensions.
*
* @note dims_ do not indicate the memory block size.
*/
DDim dims_;
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
* @note Some of them may be slices of the others. So the offset_
* is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really
* begins.
*/
size_t offset_ = 0;
};
} // namespace framework
} // namespace paddle_mobile
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册