Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cf688607
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cf688607
编写于
5月 13, 2020
作者:
J
jiaopu
提交者:
jackzhang235
5月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add layout op
上级
c096096f
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
407 addition
and
40 deletion
+407
-40
lite/core/mir/mlu_postprocess_pass.cc
lite/core/mir/mlu_postprocess_pass.cc
+14
-6
lite/kernels/mlu/bridges/CMakeLists.txt
lite/kernels/mlu/bridges/CMakeLists.txt
+3
-0
lite/kernels/mlu/bridges/layout_op.cc
lite/kernels/mlu/bridges/layout_op.cc
+108
-0
lite/kernels/mlu/bridges/layout_op_test.cc
lite/kernels/mlu/bridges/layout_op_test.cc
+190
-0
lite/kernels/mlu/bridges/paddle_use_bridges.h
lite/kernels/mlu/bridges/paddle_use_bridges.h
+1
-0
lite/kernels/mlu/bridges/tensor.cc
lite/kernels/mlu/bridges/tensor.cc
+4
-1
lite/kernels/mlu/bridges/tensor.h
lite/kernels/mlu/bridges/tensor.h
+1
-0
lite/kernels/mlu/bridges/test_helper.cc
lite/kernels/mlu/bridges/test_helper.cc
+8
-6
lite/kernels/mlu/bridges/test_helper.h
lite/kernels/mlu/bridges/test_helper.h
+2
-1
lite/kernels/mlu/bridges/utility.h
lite/kernels/mlu/bridges/utility.h
+76
-26
未找到文件。
lite/core/mir/mlu_postprocess_pass.cc
浏览文件 @
cf688607
...
...
@@ -620,7 +620,8 @@ std::string CheckInputAndInsert(Scope* scope,
auto
layout_op
=
block_desc
->
AddOp
<
cpp
::
OpDesc
>
();
auto
layout_arg_name
=
string_format
(
"%s/layout"
,
cur_node
.
c_str
());
scope
->
Var
(
layout_arg_name
);
VLOG
(
5
)
<<
"insert layout in subgraph, arg tensor name: "
<<
layout_arg_name
;
VLOG
(
5
)
<<
"insert layout in subgraph, arg tensor name: "
<<
layout_arg_name
;
layout_op
->
SetType
(
"layout"
);
layout_op
->
SetInput
(
"Input"
,
{
cur_node
});
layout_op
->
SetOutput
(
"Out"
,
{
layout_arg_name
});
...
...
@@ -663,7 +664,8 @@ std::string CheckOutputAndInsert(Scope* scope,
if
(
DataLayoutCompatible
(
*
tensor_type
,
*
subgraph_type
))
{
auto
layout_arg_name
=
string_format
(
"%s/layout"
,
cur_node
.
c_str
());
scope
->
Var
(
layout_arg_name
);
VLOG
(
5
)
<<
"insert layout in subgraph, arg tensor name: "
<<
layout_arg_name
;
VLOG
(
5
)
<<
"insert layout in subgraph, arg tensor name: "
<<
layout_arg_name
;
layout_op
=
block_desc
->
AddOp
<
cpp
::
OpDesc
>
();
layout_op
->
SetType
(
"layout"
);
layout_op
->
SetInput
(
"Input"
,
{
layout_arg_name
});
...
...
@@ -709,16 +711,22 @@ void MLUPostprocessPass::AdjustSubgraph(Node* subgraph_node,
auto
input_name
=
input
->
AsArg
().
name
;
if
(
!
(
input
->
AsArg
().
is_weight
||
input
->
AsArg
().
is_persist
))
{
i_names
.
emplace_back
(
input_name
);
node_replace
[
input_name
]
=
CheckInputAndInsert
(
op
->
scope
(),
new_block_desc
,
input_name
,
input
->
AsArg
().
type
,
subgraph_type
);
node_replace
[
input_name
]
=
CheckInputAndInsert
(
op
->
scope
(),
new_block_desc
,
input_name
,
input
->
AsArg
().
type
,
subgraph_type
);
}
}
for
(
auto
&
output
:
subgraph_node
->
outlinks
)
{
auto
output_name
=
output
->
AsArg
().
name
;
if
(
!
(
output
->
AsArg
().
is_weight
||
output
->
AsArg
().
is_persist
))
{
o_names
.
emplace_back
(
output_name
);
node_replace
[
output_name
]
=
CheckOutputAndInsert
(
op
->
scope
(),
block_desc
,
output_name
,
output
->
AsArg
().
type
,
subgraph_type
);
node_replace
[
output_name
]
=
CheckOutputAndInsert
(
op
->
scope
(),
block_desc
,
output_name
,
output
->
AsArg
().
type
,
subgraph_type
);
}
}
...
...
lite/kernels/mlu/bridges/CMakeLists.txt
浏览文件 @
cf688607
...
...
@@ -23,6 +23,7 @@ lite_cc_library(subgraph_bridge_dropout_op_mlu SRCS dropout_op.cc DEPS ${subgrap
lite_cc_library
(
subgraph_bridge_slice_op_mlu SRCS slice_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_split_op_mlu SRCS split_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_cast_op_mlu SRCS cast_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_layout_op_mlu SRCS layout_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_argmax_op_mlu SRCS argmax_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_squeeze_op_mlu SRCS squeeze_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
set
(
mlu_subgraph_bridges
...
...
@@ -44,6 +45,7 @@ set(mlu_subgraph_bridges
subgraph_bridge_slice_op_mlu
subgraph_bridge_split_op_mlu
subgraph_bridge_cast_op_mlu
subgraph_bridge_layout_op_mlu
subgraph_bridge_argmax_op_mlu
subgraph_bridge_squeeze_op_mlu
CACHE INTERNAL
"mlu_subgraph_bridges"
)
...
...
@@ -71,6 +73,7 @@ lite_cc_test(test_transpose_converter_mlu SRCS transpose_op_test.cc DEPS scope o
lite_cc_test
(
test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_slice_converter_mlu SRCS slice_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_split_converter_mlu SRCS split_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_layout_converter_mlu SRCS layout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_cast_converter_mlu SRCS cast_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_argmax_converter_mlu SRCS argmax_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_squeeze_converter_mlu SRCS squeeze_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
...
...
lite/kernels/mlu/bridges/layout_op.cc
0 → 100644
浏览文件 @
cf688607
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
LayoutConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
auto
x_var_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
std
::
shared_ptr
<
MLUTensor
>
output_tensor
;
CHECK
(
graph
->
HasNode
(
x_var_name
));
std
::
vector
<
int
>
axis
;
auto
x_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
x_data_order
=
x_tensor
->
dorder
();
auto
x_dims
=
x
->
dims
().
Vectorize
();
if
(
x_data_order
==
CNML_NCHW
)
{
switch
(
x_dims
.
size
())
{
case
2
:
axis
=
{
0
,
1
};
break
;
case
3
:
axis
=
{
0
,
2
,
1
};
break
;
case
4
:
axis
=
{
0
,
2
,
3
,
1
};
break
;
case
5
:
axis
=
{
0
,
2
,
3
,
4
,
1
};
break
;
default:
CHECK
(
0
)
<<
"Unsupport shape"
;
}
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
}
else
{
switch
(
x_dims
.
size
())
{
case
2
:
axis
=
{
0
,
1
};
break
;
case
3
:
axis
=
{
0
,
2
,
1
};
break
;
case
4
:
axis
=
{
0
,
3
,
1
,
2
};
break
;
case
5
:
axis
=
{
0
,
4
,
1
,
2
,
3
};
break
;
default:
CHECK
(
0
)
<<
"Unsupport shpae"
;
}
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
(),
CNML_NCHW
);
}
cnmlBaseOp_t
layout_op
;
cnmlNdTransposeOpParam_t
transpose_param
;
CNML_CALL
(
cnmlCreateNdTransposeOpParam
(
&
transpose_param
,
axis
.
data
(),
axis
.
size
()));
CNML_CALL
(
cnmlCreateNdTransposeProOp
(
&
layout_op
,
x_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
(),
transpose_param
));
graph
->
FuseOp
(
layout_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
layout_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
layout
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
LayoutConverter
);
lite/kernels/mlu/bridges/layout_op_test.cc
0 → 100644
浏览文件 @
cf688607
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/layout_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
void
test_layout_NHWC2NCHW
(
std
::
vector
<
int64_t
>
input_shape
)
{
// prepare input&output variables
std
::
string
x_var_name
=
"input"
;
std
::
string
out_var_name
=
"out"
;
Scope
scope
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
DDim
(
input_shape
));
// initialize input&output data
FillTensor
<
float
>
(
x
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"layout"
);
opdesc
.
SetInput
(
"Input"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
auto
op
=
CreateOp
<
operators
::
LayoutOp
>
(
opdesc
,
&
scope
);
// execute reference implementation and save to output tensor
Tensor
input
;
input
.
Resize
(
DDim
(
input_shape
));
switch
(
input_shape
.
size
())
{
case
2
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
])},
{
0
,
1
});
break
;
case
3
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
1
])},
{
0
,
2
,
1
});
break
;
case
4
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
3
]),
static_cast
<
int
>
(
input_shape
[
1
])},
{
0
,
3
,
1
,
2
});
break
;
case
5
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
3
]),
static_cast
<
int
>
(
input_shape
[
4
]),
static_cast
<
int
>
(
input_shape
[
1
])},
{
0
,
4
,
1
,
2
,
3
});
break
;
default:
CHECK
(
0
)
<<
"Unsupport"
;
}
auto
*
x_data
=
input
.
mutable_data
<
float
>
();
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data
[
i
],
x_data
[
i
],
5e-4
);
}
}
void
test_layout_NCHW2NHWC
(
std
::
vector
<
int64_t
>
input_shape
)
{
// prepare input&output variables
std
::
string
x_var_name
=
"input"
;
std
::
string
out_var_name
=
"out"
;
Scope
scope
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
DDim
(
input_shape
));
// initialize input&output data
FillTensor
<
float
>
(
x
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"layout"
);
opdesc
.
SetInput
(
"Input"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
auto
op
=
CreateOp
<
operators
::
LayoutOp
>
(
opdesc
,
&
scope
);
// execute reference implementation and save to output tensor
Tensor
input
;
input
.
Resize
(
DDim
(
input_shape
));
switch
(
input_shape
.
size
())
{
case
2
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
])},
{
0
,
1
});
break
;
case
3
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
]),
static_cast
<
int
>
(
input_shape
[
2
])},
{
0
,
2
,
1
});
break
;
case
4
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
3
])},
{
0
,
2
,
3
,
1
});
break
;
case
5
:
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
input_shape
[
0
]),
static_cast
<
int
>
(
input_shape
[
1
]),
static_cast
<
int
>
(
input_shape
[
2
]),
static_cast
<
int
>
(
input_shape
[
3
]),
static_cast
<
int
>
(
input_shape
[
4
])},
{
0
,
2
,
3
,
4
,
1
});
break
;
default:
CHECK
(
0
)
<<
"Unsupport"
;
}
auto
*
x_data
=
input
.
mutable_data
<
float
>
();
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
},
CNML_NCHW
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data
[
i
],
x_data
[
i
],
5e-4
);
}
}
TEST
(
MLUBridges
,
layout
)
{
test_layout_NHWC2NCHW
({
12
,
32
,
4
});
test_layout_NHWC2NCHW
({
12
,
32
,
44
,
3
});
test_layout_NHWC2NCHW
({
12
,
32
,
44
,
3
,
6
});
test_layout_NCHW2NHWC
({
12
,
32
,
55
});
test_layout_NCHW2NHWC
({
12
,
32
,
44
,
3
});
test_layout_NCHW2NHWC
({
12
,
32
,
44
,
3
,
8
});
test_layout_NHWC2NCHW
({
12
,
32
});
test_layout_NCHW2NHWC
({
12
,
32
});
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
layout
,
kMLU
);
lite/kernels/mlu/bridges/paddle_use_bridges.h
浏览文件 @
cf688607
...
...
@@ -35,6 +35,7 @@ USE_SUBGRAPH_BRIDGE(dropout, kMLU);
USE_SUBGRAPH_BRIDGE
(
argmax
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
split
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
cast
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
layout
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
slice
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
...
...
lite/kernels/mlu/bridges/tensor.cc
浏览文件 @
cf688607
...
...
@@ -246,7 +246,10 @@ void MLUTensor::remember(const std::vector<int>& shape,
break
;
}
}
dim_
=
shape_
.
size
();
auto
shape_NCHW
=
DimNHWC2NCHW
(
shape_
);
shape_NCHW
.
erase
(
shape_NCHW
.
begin
()
+
shape
.
size
(),
shape_NCHW
.
end
());
dim_
=
shape_NCHW
.
size
();
shape_
=
DimNCHW2NHWC
(
shape_NCHW
);
}
void
MLUTensor
::
Create
()
{
...
...
lite/kernels/mlu/bridges/tensor.h
浏览文件 @
cf688607
...
...
@@ -59,6 +59,7 @@ class MLUTensor {
~
MLUTensor
();
void
ToFile
(
std
::
string
file_name
);
cnmlDataOrder_t
dorder
()
{
return
data_order_
;
}
private:
cnmlTensor_t
mlu_tensor_
;
...
...
lite/kernels/mlu/bridges/test_helper.cc
浏览文件 @
cf688607
...
...
@@ -27,7 +27,8 @@ namespace mlu {
template
<
lite_api
::
PrecisionType
Dtype
>
void
PrepareInput
(
Graph
*
graph
,
const
std
::
string
&
input_name
,
Tensor
*
input_tensor
)
{
Tensor
*
input_tensor
,
cnmlDataOrder_t
order
)
{
thread_local
Tensor
temp_input
;
temp_input
.
Resize
(
input_tensor
->
dims
().
Vectorize
());
temp_input
.
CopyDataFrom
(
*
input_tensor
);
...
...
@@ -38,7 +39,7 @@ void PrepareInput(Graph* graph,
CNML_TENSOR
,
CNML_NCHW
,
MLUTypeTraits
<
Dtype
>::
cnml_type
,
CNML_NHWC
,
order
,
reinterpret_cast
<
void
*>
(
input_tensor
->
template
mutable_data
<
data_type
>(
TARGET
(
kMLU
))));
CHECK
(
input_node
);
...
...
@@ -50,7 +51,8 @@ void PrepareInput(Graph* graph,
void
LaunchOp
(
const
std
::
shared_ptr
<
lite
::
OpLite
>
op
,
const
std
::
vector
<
std
::
string
>&
input_var_names
,
const
std
::
vector
<
std
::
string
>&
output_var_names
)
{
const
std
::
vector
<
std
::
string
>&
output_var_names
,
cnmlDataOrder_t
order
)
{
CNRT_CALL
(
cnrtInit
(
0
));
lite
::
SetMluDevice
(
0
);
cnrtQueue_t
queue_
;
...
...
@@ -77,9 +79,9 @@ void LaunchOp(const std::shared_ptr<lite::OpLite> op,
auto
data_type
=
input_tensor
->
precision
();
switch
(
data_type
)
{
#define PREPARE_INPUT(type__) \
case PRECISION(type__): \
PrepareInput<PRECISION(type__)>(&graph, input_name, input_tensor); \
#define PREPARE_INPUT(type__)
\
case PRECISION(type__):
\
PrepareInput<PRECISION(type__)>(&graph, input_name, input_tensor
, order
); \
break;
PREPARE_INPUT
(
kFP16
)
PREPARE_INPUT
(
kFloat
)
...
...
lite/kernels/mlu/bridges/test_helper.h
浏览文件 @
cf688607
...
...
@@ -58,7 +58,8 @@ void FillTensor(Tensor* x,
void
LaunchOp
(
const
std
::
shared_ptr
<
lite
::
OpLite
>
op
,
const
std
::
vector
<
std
::
string
>&
input_var_names
,
const
std
::
vector
<
std
::
string
>&
output_var_names
);
const
std
::
vector
<
std
::
string
>&
output_var_names
,
cnmlDataOrder_t
order
=
CNML_NHWC
);
}
// namespace mlu
}
// namespace subgraph
...
...
lite/kernels/mlu/bridges/utility.h
浏览文件 @
cf688607
...
...
@@ -47,22 +47,74 @@ void transpose(dtype input_data,
std
::
vector
<
int
>
axis
)
{
int
old_index
=
-
1
;
int
new_index
=
-
1
;
int
dim
[
4
]
=
{
0
};
std
::
vector
<
int
>
shape
=
input_shape
;
for
(
dim
[
0
]
=
0
;
dim
[
0
]
<
input_shape
[
0
];
dim
[
0
]
++
)
{
for
(
dim
[
1
]
=
0
;
dim
[
1
]
<
input_shape
[
1
];
dim
[
1
]
++
)
{
for
(
dim
[
2
]
=
0
;
dim
[
2
]
<
input_shape
[
2
];
dim
[
2
]
++
)
{
for
(
dim
[
3
]
=
0
;
dim
[
3
]
<
input_shape
[
3
];
dim
[
3
]
++
)
{
old_index
=
dim
[
0
]
*
shape
[
1
]
*
shape
[
2
]
*
shape
[
3
]
+
dim
[
1
]
*
shape
[
2
]
*
shape
[
3
]
+
dim
[
2
]
*
shape
[
3
]
+
dim
[
3
];
new_index
=
dim
[
axis
[
0
]]
*
shape
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
+
dim
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
+
dim
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
+
dim
[
axis
[
3
]];
if
(
input_shape
.
size
()
==
2
)
{
int
dim
[
2
]
=
{
0
};
std
::
vector
<
int
>
shape
=
input_shape
;
for
(
dim
[
0
]
=
0
;
dim
[
0
]
<
input_shape
[
0
];
dim
[
0
]
++
)
{
for
(
dim
[
1
]
=
0
;
dim
[
1
]
<
input_shape
[
1
];
dim
[
1
]
++
)
{
old_index
=
dim
[
0
]
*
shape
[
1
]
+
dim
[
1
];
new_index
=
dim
[
axis
[
0
]]
*
shape
[
axis
[
1
]]
+
dim
[
axis
[
1
]];
output_data
[
new_index
]
=
input_data
[
old_index
];
}
}
}
else
if
(
input_shape
.
size
()
==
3
)
{
int
dim
[
3
]
=
{
0
};
std
::
vector
<
int
>
shape
=
input_shape
;
for
(
dim
[
0
]
=
0
;
dim
[
0
]
<
input_shape
[
0
];
dim
[
0
]
++
)
{
for
(
dim
[
1
]
=
0
;
dim
[
1
]
<
input_shape
[
1
];
dim
[
1
]
++
)
{
for
(
dim
[
2
]
=
0
;
dim
[
2
]
<
input_shape
[
2
];
dim
[
2
]
++
)
{
old_index
=
dim
[
0
]
*
shape
[
1
]
*
shape
[
2
]
+
dim
[
1
]
*
shape
[
2
]
+
dim
[
2
];
new_index
=
dim
[
axis
[
0
]]
*
shape
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
+
dim
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
+
dim
[
axis
[
2
]];
output_data
[
new_index
]
=
input_data
[
old_index
];
}
}
}
}
else
if
(
input_shape
.
size
()
==
4
)
{
int
dim
[
4
]
=
{
0
};
std
::
vector
<
int
>
shape
=
input_shape
;
for
(
dim
[
0
]
=
0
;
dim
[
0
]
<
input_shape
[
0
];
dim
[
0
]
++
)
{
for
(
dim
[
1
]
=
0
;
dim
[
1
]
<
input_shape
[
1
];
dim
[
1
]
++
)
{
for
(
dim
[
2
]
=
0
;
dim
[
2
]
<
input_shape
[
2
];
dim
[
2
]
++
)
{
for
(
dim
[
3
]
=
0
;
dim
[
3
]
<
input_shape
[
3
];
dim
[
3
]
++
)
{
old_index
=
dim
[
0
]
*
shape
[
1
]
*
shape
[
2
]
*
shape
[
3
]
+
dim
[
1
]
*
shape
[
2
]
*
shape
[
3
]
+
dim
[
2
]
*
shape
[
3
]
+
dim
[
3
];
new_index
=
dim
[
axis
[
0
]]
*
shape
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
+
dim
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
+
dim
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
+
dim
[
axis
[
3
]];
output_data
[
new_index
]
=
input_data
[
old_index
];
}
}
}
}
}
else
if
(
input_shape
.
size
()
==
5
)
{
int
dim
[
5
]
=
{
0
};
std
::
vector
<
int
>
shape
=
input_shape
;
for
(
dim
[
0
]
=
0
;
dim
[
0
]
<
input_shape
[
0
];
dim
[
0
]
++
)
{
for
(
dim
[
1
]
=
0
;
dim
[
1
]
<
input_shape
[
1
];
dim
[
1
]
++
)
{
for
(
dim
[
2
]
=
0
;
dim
[
2
]
<
input_shape
[
2
];
dim
[
2
]
++
)
{
for
(
dim
[
3
]
=
0
;
dim
[
3
]
<
input_shape
[
3
];
dim
[
3
]
++
)
{
for
(
dim
[
4
]
=
0
;
dim
[
4
]
<
input_shape
[
4
];
dim
[
4
]
++
)
{
old_index
=
dim
[
0
]
*
shape
[
1
]
*
shape
[
2
]
*
shape
[
3
]
*
shape
[
4
]
+
dim
[
1
]
*
shape
[
2
]
*
shape
[
3
]
*
shape
[
4
]
+
dim
[
2
]
*
shape
[
3
]
*
shape
[
4
]
+
dim
[
3
]
*
shape
[
4
]
+
dim
[
4
];
new_index
=
dim
[
axis
[
0
]]
*
shape
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
*
shape
[
axis
[
4
]]
+
dim
[
axis
[
1
]]
*
shape
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
*
shape
[
axis
[
4
]]
+
dim
[
axis
[
2
]]
*
shape
[
axis
[
3
]]
*
shape
[
axis
[
4
]]
+
dim
[
axis
[
3
]]
*
shape
[
axis
[
4
]]
+
dim
[
axis
[
4
]];
output_data
[
new_index
]
=
input_data
[
old_index
];
}
}
}
}
}
}
else
{
}
}
...
...
@@ -103,41 +155,39 @@ inline const ::paddle::lite::DDimLite DimNCHW2NHWC(
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]}));
}
inline
const
std
::
vector
<
DDimLite
::
value_type
>
DimNHWC2NCHW
(
const
std
::
vector
<
DDimLite
::
value_type
>&
dim
)
{
template
<
typename
data_type
>
inline
const
std
::
vector
<
data_type
>
DimNHWC2NCHW
(
const
std
::
vector
<
data_type
>&
dim
)
{
switch
(
dim
.
size
())
{
case
1
:
return
dim
;
case
2
:
return
dim
;
case
3
:
return
std
::
vector
<
DDimLite
::
value
_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
return
std
::
vector
<
data
_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
case
4
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
3
],
dim
[
1
],
dim
[
2
]});
return
std
::
vector
<
data_type
>
({
dim
[
0
],
dim
[
3
],
dim
[
1
],
dim
[
2
]});
case
5
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
4
],
dim
[
1
],
dim
[
2
],
dim
[
3
]});
return
std
::
vector
<
data_type
>
({
dim
[
0
],
dim
[
4
],
dim
[
1
],
dim
[
2
],
dim
[
3
]});
default:
CHECK
(
0
)
<<
"unsupport dimension"
;
}
}
inline
const
std
::
vector
<
DDimLite
::
value_type
>
DimNCHW2NHWC
(
const
std
::
vector
<
DDimLite
::
value_type
>&
dim
)
{
template
<
typename
data_type
>
inline
const
std
::
vector
<
data_type
>
DimNCHW2NHWC
(
const
std
::
vector
<
data_type
>&
dim
)
{
switch
(
dim
.
size
())
{
case
1
:
return
dim
;
case
2
:
return
dim
;
case
3
:
return
std
::
vector
<
DDimLite
::
value
_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
return
std
::
vector
<
data
_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
case
4
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]});
return
std
::
vector
<
data_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]});
case
5
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
4
],
dim
[
1
]});
return
std
::
vector
<
data_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
4
],
dim
[
1
]});
default:
CHECK
(
0
)
<<
"unsupport dimension"
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录