Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cdde336e
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cdde336e
编写于
3月 08, 2020
作者:
H
HappyAngel
提交者:
GitHub
3月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[opencl] Add lrn OP (#3104)
* add lrn op * fix v7 build error, test=develop
上级
f4cb3bc4
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
604 addition
and
4 deletion
+604
-4
lite/backends/opencl/cl_kernel/image/lrn_kernel.cl
lite/backends/opencl/cl_kernel/image/lrn_kernel.cl
+159
-0
lite/kernels/opencl/CMakeLists.txt
lite/kernels/opencl/CMakeLists.txt
+5
-0
lite/kernels/opencl/lrn_image_compute.cc
lite/kernels/opencl/lrn_image_compute.cc
+166
-0
lite/kernels/opencl/lrn_image_compute_test.cc
lite/kernels/opencl/lrn_image_compute_test.cc
+270
-0
lite/utils/cv/image_resize.cc
lite/utils/cv/image_resize.cc
+4
-4
未找到文件。
lite/backends/opencl/cl_kernel/image/lrn_kernel.cl
0 → 100644
浏览文件 @
cdde336e
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
lrn
(
__read_only
image2d_t
input,
__write_only
image2d_t
output,
__private
const
int
out_C,
__private
const
int
out_W,
__private
const
int
local_size,
__private
const
float
k,
__private
const
float
alpha,
__private
const
float
beta
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_c0
=
out_c
*
4
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
int
out_c1
=
out_c0
+
1
;
const
int
out_c2
=
out_c0
+
2
;
const
int
out_c3
=
out_c0
+
3
;
const
int
pad
=
(
local_size
-
1
)
/
2
;
const
int
start
=
out_c0
-
pad
;
const
int
end
=
out_c0
+
pad
;
start
=
start
>
0
?
start
:
0
;
end
=
end
<
out_C
-
1
?
end
:
out_C
-
1
;
float
square0
=
0.0
;
float
square1
=
0.0
;
float
square2
=
0.0
;
float
square3
=
0.0
;
for
(
int
i
=
start
; i <= end; i++){
int
input_c0
=
i
/
4
;
int2
input_pos
;
input_pos.x
=
input_c0
*
out_C
+
out_w
;
input_pos.y
=
out_nh
;
CL_DTYPE4
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
input_pos
)
;
int
num
=
i
%
4
;
switch
(
num
)
{
case
0:
square0
+=
input_data.x
*
input_data.x
;
break
;
case
1:
square0
+=
input_data.y
*
input_data.y
;
break
;
case
2:
square0
+=
input_data.z
*
input_data.z
;
break
;
case
3:
square0
+=
input_data.w
*
input_data.w
;
break
;
}
}
start
=
out_c1
-
pad
;
end
=
out_c1
+
pad
;
for
(
int
i
=
start
; i <= end; i++){
int
input_c0
=
i
/
4
;
int2
input_pos
;
input_pos.x
=
input_c0
*
out_C
+
out_w
;
input_pos.y
=
out_nh
;
CL_DTYPE4
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
input_pos
)
;
int
num
=
i
%
4
;
switch
(
num
)
{
case
0:
square1
+=
input_data.x
*
input_data.x
;
break
;
case
1:
square1
+=
input_data.y
*
input_data.y
;
break
;
case
2:
square1
+=
input_data.z
*
input_data.z
;
break
;
case
3:
square1
+=
input_data.w
*
input_data.w
;
break
;
}
}
start
=
out_c2
-
pad
;
end
=
out_c2
+
pad
;
for
(
int
i
=
start
; i <= end; i++){
int
input_c0
=
i
/
4
;
int2
input_pos
;
input_pos.x
=
input_c0
*
out_C
+
out_w
;
input_pos.y
=
out_nh
;
CL_DTYPE4
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
input_pos
)
;
int
num
=
i
%
4
;
switch
(
num
)
{
case
0:
square2
+=
input_data.x
*
input_data.x
;
break
;
case
1:
square2
+=
input_data.y
*
input_data.y
;
break
;
case
2:
square2
+=
input_data.z
*
input_data.z
;
break
;
case
3:
square2
+=
input_data.w
*
input_data.w
;
break
;
}
}
start
=
out_c3
-
pad
;
end
=
out_c3
+
pad
;
for
(
int
i
=
start
; i <= end; i++){
int
input_c0
=
i
/
4
;
int2
input_pos
;
input_pos.x
=
input_c0
*
out_C
+
out_w
;
input_pos.y
=
out_nh
;
CL_DTYPE4
input_data
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
input_pos
)
;
int
num
=
i
%
4
;
switch
(
num
)
{
case
0:
square3
+=
input_data.x
*
input_data.x
;
break
;
case
1:
square3
+=
input_data.y
*
input_data.y
;
break
;
case
2:
square3
+=
input_data.z
*
input_data.z
;
break
;
case
3:
square3
+=
input_data.w
*
input_data.w
;
break
;
}
}
int2
out_pos
;
out_pos.x
=
out_c
*
out_W
+
out_w
;
out_pos.y
=
out_nh
;
CL_DTYPE4
input
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
out_pos
)
;
float4
out_val
;
out_val.x
=
input.x
/
(
pow
(
k
+
alpha
*
(
square0
)
,
beta
))
;
if
(
out_c1
<
out_C
)
{
out_val.y
=
input.y
/
(
pow
(
k
+
alpha
*
(
square1
)
,
beta
))
;
}
if
(
out_c2
<
out_C
)
{
out_val.z
=
input.z
/
(
pow
(
k
+
alpha
*
(
square1
)
,
beta
))
;
}
if
(
out_c3
<
out_C
)
{
out_val.w
=
input.w
/
(
pow
(
k
+
alpha
*
(
square1
)
,
beta
))
;
}
CL_DTYPE4
out_data
=
CONVERT_TYPE_TO
(
out_val,
CL_DTYPE4
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output,
out_pos,
out_data
)
;
}
lite/kernels/opencl/CMakeLists.txt
浏览文件 @
cdde336e
...
...
@@ -23,7 +23,9 @@ add_kernel(concat_opencl OPENCL basic SRCS concat_image_compute.cc DEPS ${cl_ker
add_kernel
(
nearest_interp_opencl OPENCL basic SRCS nearest_interp_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
scale_opencl OPENCL basic SRCS scale_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
grid_sampler_opencl OPENCL basic SRCS grid_sampler_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
lrn_opencl OPENCL basic SRCS lrn_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
bilinear_interp_opencl OPENCL basic SRCS bilinear_interp_image_compute.cc DEPS
${
cl_kernel_deps
}
)
# extra
# wait to add ...
...
...
@@ -69,6 +71,9 @@ lite_cc_test(test_elementwise_add_image_opencl SRCS elementwise_add_image_comput
lite_cc_test
(
test_grid_sampler_image_opencl SRCS grid_sampler_image_compute_test.cc
DEPS grid_sampler_opencl op_registry program context
)
lite_cc_test
(
test_lrn_image_opencl SRCS lrn_image_compute_test.cc
DEPS lrn_opencl op_registry program context
)
lite_cc_test
(
test_bilinear_interp_image_opencl SRCS bilinear_interp_image_compute_test.cc
DEPS bilinear_interp_opencl op_registry program context
)
...
...
lite/kernels/opencl/lrn_image_compute.cc
0 → 100644
浏览文件 @
cdde336e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
LrnImageCompute
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
LrnParam
;
std
::
string
doc
()
const
override
{
return
"Lrn using cl::Image2D(ImageDefault/RGBA), kFP16"
;
}
void
PrepareForRun
()
override
{
lrn_param_
=
param_
.
get_mutable
<
param_t
>
();
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
n_
=
lrn_param_
->
n
;
k_
=
lrn_param_
->
k
;
alpha_
=
lrn_param_
->
alpha
;
beta_
=
lrn_param_
->
beta
;
norm_region_
=
lrn_param_
->
norm_region
;
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/lrn_kernel.cl"
,
build_options_
);
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
}
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
auto
*
x
=
lrn_param_
->
X
;
auto
*
out
=
lrn_param_
->
Out
;
if
(
norm_region_
!=
"AcrossChannels"
)
{
LOG
(
FATAL
)
<<
"This norm_region_: "
<<
norm_region_
<<
"doesn't support"
;
return
;
}
auto
out_dims
=
out
->
dims
();
auto
in_dims
=
x
->
dims
();
VLOG
(
4
)
<<
"x->target(): "
<<
TargetToStr
(
x
->
target
());
VLOG
(
4
)
<<
"out->target(): "
<<
TargetToStr
(
out
->
target
());
VLOG
(
4
)
<<
"x->dims(): "
<<
in_dims
;
VLOG
(
4
)
<<
"lrn param: "
;
VLOG
(
4
)
<<
"n: "
<<
n_
;
VLOG
(
4
)
<<
"k: "
<<
k_
;
VLOG
(
4
)
<<
"alpha: "
<<
alpha_
;
VLOG
(
4
)
<<
"beta: "
<<
beta_
;
VLOG
(
4
)
<<
"norm_region: "
<<
norm_region_
;
auto
out_image_shape
=
InitImageDimInfoWith
(
out_dims
);
auto
*
x_img
=
x
->
data
<
half_t
,
cl
::
Image2D
>
();
// VLOG(4) << "x_image: " << x_img;
auto
*
out_img
=
out
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
"width"
],
out_image_shape
[
"height"
]);
// VLOG(4) << "out_image" << out_img;
VLOG
(
4
)
<<
"out_image_shape[w,h]:"
<<
out_image_shape
[
"width"
]
<<
" "
<<
out_image_shape
[
"height"
];
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
int
arg_idx
=
0
;
int
out_channel
=
out_dims
[
1
];
int
out_width
=
out_dims
[
3
];
auto
default_work_size
=
DefaultWorkSize
(
out_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
out_image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
out_image_shape
[
"height"
])}));
VLOG
(
4
)
<<
"default_work_size: "
<<
default_work_size
[
0
]
<<
", "
<<
default_work_size
[
1
]
<<
", "
<<
default_work_size
[
3
];
cl_int
status
=
kernel
.
setArg
(
arg_idx
++
,
*
x_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
out_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_channel
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
out_width
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
n_
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
k_
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
alpha_
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
beta_
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
default_work_size
[
0
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
[
1
]),
static_cast
<
cl
::
size_type
>
(
default_work_size
[
2
])};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_img
,
event_
);
VLOG
(
4
)
<<
"global_work_size:[2D]:"
<<
global_work_size
[
0
]
<<
" "
<<
global_work_size
[
1
]
<<
" "
<<
global_work_size
[
2
];
}
protected:
param_t
*
lrn_param_
{
nullptr
};
int
n_
{
5
};
float
alpha_
{
1e-4
};
float
beta_
{
0.75
};
float
k_
{
1.
};
std
::
string
norm_region_
{
"AcrossChannels"
};
std
::
string
kernel_func_name_
{
"lrn"
};
std
::
string
build_options_
{
"-DCL_DTYPE_half"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
namespace
ocl
=
paddle
::
lite
::
kernels
::
opencl
;
REGISTER_LITE_KERNEL
(
lrn
,
kOpenCL
,
kFP16
,
kImageDefault
,
ocl
::
LrnImageCompute
,
ImageDefault
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
lite/kernels/opencl/lrn_image_compute_test.cc
0 → 100644
浏览文件 @
cdde336e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <memory>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-1)
namespace
paddle
{
namespace
lite
{
float
lrn_square
(
const
float
*
din
,
int
c
,
int
offset
,
int
channel
,
int
height
,
int
width
,
int
local_size
)
{
int
pre_pad
=
(
local_size
-
1
)
/
2
;
float
sum
=
0.
f
;
int
start
=
c
-
pre_pad
;
int
end
=
c
+
pre_pad
;
start
=
start
<
0
?
0
:
start
;
end
=
end
<
channel
-
1
?
end
:
channel
-
1
;
for
(
int
i
=
start
;
i
<=
end
;
i
++
)
{
sum
+=
din
[
i
*
height
*
width
]
*
din
[
i
*
height
*
width
];
}
return
sum
;
}
void
lrn_ref
(
const
float
*
din
,
const
DDim
&
in_dims
,
float
*
output
,
int
local_size
,
float
k
,
float
alpha
,
float
beta
,
std
::
string
norm_region
)
{
int
num
=
in_dims
[
0
];
int
channel
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
if
(
norm_region
==
"AcrossChannels"
)
{
for
(
int
b
=
0
;
b
<
num
;
b
++
)
{
const
float
*
din_batch
=
din
+
b
*
channel
*
height
*
width
;
float
*
dout_batch
=
output
+
b
*
channel
*
height
*
width
;
int
offset_num
=
b
*
channel
*
height
*
width
;
for
(
int
c
=
0
;
c
<
channel
;
c
++
)
{
for
(
int
h
=
0
;
h
<
height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
width
;
++
w
)
{
int
offset_within_channel
=
h
*
width
+
w
;
int
dst_id
=
c
*
height
*
width
+
offset_within_channel
;
float
square
=
lrn_square
(
din_batch
,
c
,
offset_within_channel
,
channel
,
height
,
width
,
local_size
);
dout_batch
[
dst_id
]
=
din_batch
[
dst_id
]
*
pow
(
k
+
alpha
*
square
,
-
beta
);
}
}
}
}
}
}
// #define LRN_FP16_LOOP_TEST
// #define LRN_FP16_PRINT_RESULT
TEST
(
lrn_image2d
,
compute
)
{
#ifdef LRN_FP16_LOOP_TEST
for
(
int
n
=
1
;
n
<=
100
;
n
+=
33
)
{
for
(
auto
c
:
{
1
,
3
,
8
,
23
,
32
})
{
for
(
int
h
=
12
;
h
<=
100
;
h
+=
13
)
{
for
(
int
w
=
12
;
w
<=
100
;
w
+=
25
)
{
for
(
auto
num
:
{
3
,
5
,
9
})
{
for
(
auto
k
:
{
1.0
,
1.5
})
{
for
(
auto
alpha
:
{
1e-4
})
{
for
(
auto
beta
:
{
0.5
,
0.75
})
{
for
(
auto
norm_region
:
{
"AcrossChannels"
})
{
#else
const
int
n
=
1
;
const
int
c
=
5
;
const
int
h
=
2
;
const
int
w
=
4
;
const
int
num
=
5
;
const
float
k
=
1.0
;
const
float
alpha
=
1e-4
;
const
float
beta
=
0.75
;
const
std
::
string
norm_region
=
"AcrossChannels"
;
#endif // GRID_FP16_LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
c
<<
" "
<<
h
<<
" "
<<
w
<<
" ========"
;
LOG
(
INFO
)
<<
"LRN parameters: "
;
LOG
(
INFO
)
<<
"num: "
<<
num
<<
", k: "
<<
k
<<
", alpha: "
<<
alpha
<<
", beta: "
<<
beta
<<
", norm_region: "
<<
norm_region
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"lrn"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"get kernel:"
<<
kernel
->
doc
();
lite
::
Tensor
x
,
out
;
operators
::
LrnParam
param
;
param
.
X
=
&
x
;
param
.
Out
=
&
out
;
param
.
n
=
num
;
param
.
k
=
k
;
param
.
alpha
=
alpha
;
param
.
beta
=
beta
;
param
.
norm_region
=
norm_region
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
lrn_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
lrn_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
lrn_context
));
const
DDim
in_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
});
const
DDim
out_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
});
x
.
Resize
(
in_dim
);
out
.
Resize
(
out_dim
);
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
1
,
1
);
int
sum
=
n
*
c
*
h
*
w
;
std
::
vector
<
float
>
input_v
(
sum
);
for
(
auto
&
i
:
input_v
)
{
i
=
dist
(
engine
);
}
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
x_image_shape
=
default_converter
->
InitImageDimInfoWith
(
in_dim
);
LOG
(
INFO
)
<<
"x_image_shape = "
<<
x_image_shape
[
0
]
<<
" "
<<
x_image_shape
[
1
];
std
::
vector
<
half_t
>
x_image_data
(
x_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
input_v
.
data
(),
x_image_data
.
data
(),
in_dim
);
auto
*
x_image
=
x
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
x_image_shape
[
0
],
x_image_shape
[
1
],
x_image_data
.
data
());
// LOG(INFO) << "x_image:" << x_image;
DDim
out_image_shape
=
default_converter
->
InitImageDimInfoWith
(
out_dim
);
LOG
(
INFO
)
<<
"out_image_shape = "
<<
out_image_shape
[
0
]
<<
" "
<<
out_image_shape
[
1
];
auto
*
out_image
=
out
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
0
],
out_image_shape
[
1
]);
// LOG(INFO) << "out_image:" << out_image;
kernel
->
Launch
();
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
Out
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
VLOG
(
4
)
<<
"--- Find the sync event for the target cl "
"tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the "
"target cl tensor."
;
}
std
::
unique_ptr
<
float
[]
>
out_ref
(
new
float
[
out_dim
.
production
()]);
lrn_ref
(
input_v
.
data
(),
in_dim
,
out_ref
.
get
(),
num
,
k
,
alpha
,
beta
,
norm_region
);
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
40000
];
// out_image_shape.production() *
// 4];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
out_image_shape
[
0
],
out_image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
float
*
out_data
=
new
float
[
40000
];
// out_image_shape.production() * 4];
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
,
out_image_shape
,
out_dim
);
// result
#ifdef LRN_FP16_PRINT_RESULT
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
in_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
input_v
[
eidx
]
<<
" -> "
<<
out_data
[
eidx
]
<<
std
::
endl
;
}
#endif // LRN_FP16_PRINT_RESULT
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
auto
abs_diff
=
abs
(
out_data
[
i
]
-
out_ref
[
i
]);
auto
relative_diff
=
COMPUTE_RELATIVE_DIFF
(
out_data
[
i
],
out_ref
[
i
]);
EXPECT_EQ
((
relative_diff
<=
FP16_MAX_DIFF
)
||
(
abs_diff
<=
FP16_MAX_DIFF
),
true
);
if
((
relative_diff
>
FP16_MAX_DIFF
)
&&
(
abs_diff
>
FP16_MAX_DIFF
))
{
LOG
(
ERROR
)
<<
"error idx: "
<<
i
<<
", input_v["
<<
i
<<
"]: "
<<
input_v
[
i
]
<<
", output_data["
<<
i
<<
"]: "
<<
out_data
[
i
]
<<
", out_ref["
<<
i
<<
"]:"
<<
out_ref
[
i
]
<<
" abs_diff:"
<<
abs_diff
<<
" relative_diff:"
<<
relative_diff
<<
" FP16_MAX_DIFF:"
<<
FP16_MAX_DIFF
;
}
}
#ifdef LRN_FP16_LOOP_TEST
}
// norm_region
}
// beta
}
// alpha
}
// k
}
// num
}
// w
}
// h
}
// c
}
// n
#else
// nothing to do.
#endif
}
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
lrn
,
kOpenCL
,
kFP16
,
kImageDefault
,
ImageDefault
);
lite/utils/cv/image_resize.cc
浏览文件 @
cdde336e
...
...
@@ -236,10 +236,10 @@ void resize(const uint8_t* src,
"vorr.s32 q10, q12, q12
\n
"
"vorr.s32 q11, q12, q12
\n
"
"vmull.s16 q0, d2, %[_b0]
\n
"
"vmull.s16 q1, d3, %[_b0]
\n
"
"vmull.s16 q2, d6, %[_b1]
\n
"
"vmull.s16 q3, d7, %[_b1]
\n
"
"vmull.s16 q0, d2, %
e
[_b0]
\n
"
"vmull.s16 q1, d3, %
e
[_b0]
\n
"
"vmull.s16 q2, d6, %
e
[_b1]
\n
"
"vmull.s16 q3, d7, %
e
[_b1]
\n
"
"vsra.s32 q10, q0, #16
\n
"
"vsra.s32 q11, q1, #16
\n
"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录