提交 cdde336e 编写于 作者: H HappyAngel 提交者: GitHub

[opencl] Add lrn OP (#3104)

* add lrn op

* fix v7 build error, test=develop
上级 f4cb3bc4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
__kernel void lrn(__read_only image2d_t input,
__write_only image2d_t output,
__private const int out_C,
__private const int out_W,
__private const int local_size,
__private const float k,
__private const float alpha,
__private const float beta){
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const int out_c0 = out_c * 4;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
const int out_c1 = out_c0 + 1;
const int out_c2 = out_c0 + 2;
const int out_c3 = out_c0 + 3;
const int pad = (local_size - 1) / 2;
const int start = out_c0 - pad;
const int end = out_c0 + pad;
start = start > 0 ? start : 0;
end = end < out_C - 1 ? end : out_C - 1;
float square0 = 0.0;
float square1 = 0.0;
float square2 = 0.0;
float square3 = 0.0;
for (int i = start; i <= end; i++){
int input_c0 = i / 4;
int2 input_pos;
input_pos.x = input_c0 * out_C + out_w;
input_pos.y = out_nh;
CL_DTYPE4 input_data = READ_IMG_TYPE(CL_DTYPE_CHAR, input, sampler, input_pos);
int num = i % 4;
switch (num){
case 0:
square0 += input_data.x * input_data.x;
break;
case 1:
square0 += input_data.y * input_data.y;
break;
case 2:
square0 += input_data.z * input_data.z;
break;
case 3:
square0 += input_data.w * input_data.w;
break;
}
}
start = out_c1 - pad;
end = out_c1 + pad;
for (int i = start; i <= end; i++){
int input_c0 = i / 4;
int2 input_pos;
input_pos.x = input_c0 * out_C + out_w;
input_pos.y = out_nh;
CL_DTYPE4 input_data = READ_IMG_TYPE(CL_DTYPE_CHAR, input, sampler, input_pos);
int num = i % 4;
switch (num){
case 0:
square1 += input_data.x * input_data.x;
break;
case 1:
square1 += input_data.y * input_data.y;
break;
case 2:
square1 += input_data.z * input_data.z;
break;
case 3:
square1 += input_data.w * input_data.w;
break;
}
}
start = out_c2 - pad;
end = out_c2 + pad;
for (int i = start; i <= end; i++){
int input_c0 = i / 4;
int2 input_pos;
input_pos.x = input_c0 * out_C + out_w;
input_pos.y = out_nh;
CL_DTYPE4 input_data = READ_IMG_TYPE(CL_DTYPE_CHAR, input, sampler, input_pos);
int num = i % 4;
switch (num){
case 0:
square2 += input_data.x * input_data.x;
break;
case 1:
square2 += input_data.y * input_data.y;
break;
case 2:
square2 += input_data.z * input_data.z;
break;
case 3:
square2 += input_data.w * input_data.w;
break;
}
}
start = out_c3 - pad;
end = out_c3 + pad;
for (int i = start; i <= end; i++){
int input_c0 = i / 4;
int2 input_pos;
input_pos.x = input_c0 * out_C + out_w;
input_pos.y = out_nh;
CL_DTYPE4 input_data = READ_IMG_TYPE(CL_DTYPE_CHAR, input, sampler, input_pos);
int num = i % 4;
switch (num){
case 0:
square3 += input_data.x * input_data.x;
break;
case 1:
square3 += input_data.y * input_data.y;
break;
case 2:
square3 += input_data.z * input_data.z;
break;
case 3:
square3 += input_data.w * input_data.w;
break;
}
}
int2 out_pos;
out_pos.x = out_c * out_W + out_w;
out_pos.y = out_nh;
CL_DTYPE4 input = READ_IMG_TYPE(CL_DTYPE_CHAR, input, sampler, out_pos);
float4 out_val;
out_val.x = input.x / (pow(k + alpha * (square0), beta));
if (out_c1 < out_C){
out_val.y = input.y / (pow(k + alpha * (square1), beta));
}
if (out_c2 < out_C){
out_val.z = input.z / (pow(k + alpha * (square1), beta));
}
if (out_c3 < out_C){
out_val.w = input.w / (pow(k + alpha * (square1), beta));
}
CL_DTYPE4 out_data = CONVERT_TYPE_TO(out_val, CL_DTYPE4);
WRITE_IMG_TYPE(CL_DTYPE_CHAR, output, out_pos, out_data);
}
......@@ -23,7 +23,9 @@ add_kernel(concat_opencl OPENCL basic SRCS concat_image_compute.cc DEPS ${cl_ker
add_kernel(nearest_interp_opencl OPENCL basic SRCS nearest_interp_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(scale_opencl OPENCL basic SRCS scale_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(grid_sampler_opencl OPENCL basic SRCS grid_sampler_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(lrn_opencl OPENCL basic SRCS lrn_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(bilinear_interp_opencl OPENCL basic SRCS bilinear_interp_image_compute.cc DEPS ${cl_kernel_deps})
# extra
# wait to add ...
......@@ -68,6 +70,9 @@ lite_cc_test(test_elementwise_add_image_opencl SRCS elementwise_add_image_comput
lite_cc_test(test_grid_sampler_image_opencl SRCS grid_sampler_image_compute_test.cc
DEPS grid_sampler_opencl op_registry program context)
lite_cc_test(test_lrn_image_opencl SRCS lrn_image_compute_test.cc
DEPS lrn_opencl op_registry program context)
lite_cc_test(test_bilinear_interp_image_opencl SRCS bilinear_interp_image_compute_test.cc
DEPS bilinear_interp_opencl op_registry program context)
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class LrnImageCompute : public KernelLite<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault)> {
public:
using param_t = operators::LrnParam;
std::string doc() const override {
return "Lrn using cl::Image2D(ImageDefault/RGBA), kFP16";
}
void PrepareForRun() override {
lrn_param_ = param_.get_mutable<param_t>();
auto& context = ctx_->As<OpenCLContext>();
n_ = lrn_param_->n;
k_ = lrn_param_->k;
alpha_ = lrn_param_->alpha;
beta_ = lrn_param_->beta;
norm_region_ = lrn_param_->norm_region;
context.cl_context()->AddKernel(
kernel_func_name_, "image/lrn_kernel.cl", build_options_);
VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
}
void Run() override {
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
auto* x = lrn_param_->X;
auto* out = lrn_param_->Out;
if (norm_region_ != "AcrossChannels") {
LOG(FATAL) << "This norm_region_: " << norm_region_ << "doesn't support";
return;
}
auto out_dims = out->dims();
auto in_dims = x->dims();
VLOG(4) << "x->target(): " << TargetToStr(x->target());
VLOG(4) << "out->target(): " << TargetToStr(out->target());
VLOG(4) << "x->dims(): " << in_dims;
VLOG(4) << "lrn param: ";
VLOG(4) << "n: " << n_;
VLOG(4) << "k: " << k_;
VLOG(4) << "alpha: " << alpha_;
VLOG(4) << "beta: " << beta_;
VLOG(4) << "norm_region: " << norm_region_;
auto out_image_shape = InitImageDimInfoWith(out_dims);
auto* x_img = x->data<half_t, cl::Image2D>();
// VLOG(4) << "x_image: " << x_img;
auto* out_img = out->mutable_data<half_t, cl::Image2D>(
out_image_shape["width"], out_image_shape["height"]);
// VLOG(4) << "out_image" << out_img;
VLOG(4) << "out_image_shape[w,h]:" << out_image_shape["width"] << " "
<< out_image_shape["height"];
STL::stringstream kernel_key;
kernel_key << kernel_func_name_ << build_options_;
auto kernel = context.cl_context()->GetKernel(kernel_key.str());
int arg_idx = 0;
int out_channel = out_dims[1];
int out_width = out_dims[3];
auto default_work_size =
DefaultWorkSize(out_dims,
DDim(std::vector<DDim::value_type>{
static_cast<int64_t>(out_image_shape["width"]),
static_cast<int64_t>(out_image_shape["height"])}));
VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
<< default_work_size[1] << ", " << default_work_size[3];
cl_int status = kernel.setArg(arg_idx++, *x_img);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, *out_img);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, out_channel);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, out_width);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, n_);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, k_);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, alpha_);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, beta_);
CL_CHECK_FATAL(status);
auto global_work_size =
cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
static_cast<cl::size_type>(default_work_size[1]),
static_cast<cl::size_type>(default_work_size[2])};
status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
kernel,
cl::NullRange,
global_work_size,
cl::NullRange,
nullptr,
event_.get());
CL_CHECK_FATAL(status);
context.cl_wait_list()->emplace(out_img, event_);
VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
<< global_work_size[1] << " " << global_work_size[2];
}
protected:
param_t* lrn_param_{nullptr};
int n_{5};
float alpha_{1e-4};
float beta_{0.75};
float k_{1.};
std::string norm_region_{"AcrossChannels"};
std::string kernel_func_name_{"lrn"};
std::string build_options_{"-DCL_DTYPE_half"};
std::shared_ptr<cl::Event> event_{new cl::Event};
};
} // namespace opencl
} // namespace kernels
} // namespace lite
} // namespace paddle
namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(
lrn, kOpenCL, kFP16, kImageDefault, ocl::LrnImageCompute, ImageDefault)
.BindInput("X",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
.BindOutput("Output",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <memory>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-1)
namespace paddle {
namespace lite {
float lrn_square(const float* din,
int c,
int offset,
int channel,
int height,
int width,
int local_size) {
int pre_pad = (local_size - 1) / 2;
float sum = 0.f;
int start = c - pre_pad;
int end = c + pre_pad;
start = start < 0 ? 0 : start;
end = end < channel - 1 ? end : channel - 1;
for (int i = start; i <= end; i++) {
sum += din[i * height * width] * din[i * height * width];
}
return sum;
}
void lrn_ref(const float* din,
const DDim& in_dims,
float* output,
int local_size,
float k,
float alpha,
float beta,
std::string norm_region) {
int num = in_dims[0];
int channel = in_dims[1];
int height = in_dims[2];
int width = in_dims[3];
if (norm_region == "AcrossChannels") {
for (int b = 0; b < num; b++) {
const float* din_batch = din + b * channel * height * width;
float* dout_batch = output + b * channel * height * width;
int offset_num = b * channel * height * width;
for (int c = 0; c < channel; c++) {
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width; ++w) {
int offset_within_channel = h * width + w;
int dst_id = c * height * width + offset_within_channel;
float square = lrn_square(din_batch,
c,
offset_within_channel,
channel,
height,
width,
local_size);
dout_batch[dst_id] =
din_batch[dst_id] * pow(k + alpha * square, -beta);
}
}
}
}
}
}
// #define LRN_FP16_LOOP_TEST
// #define LRN_FP16_PRINT_RESULT
TEST(lrn_image2d, compute) {
#ifdef LRN_FP16_LOOP_TEST
for (int n = 1; n <= 100; n += 33) {
for (auto c : {1, 3, 8, 23, 32}) {
for (int h = 12; h <= 100; h += 13) {
for (int w = 12; w <= 100; w += 25) {
for (auto num : {3, 5, 9}) {
for (auto k : {1.0, 1.5}) {
for (auto alpha : {1e-4}) {
for (auto beta : {0.5, 0.75}) {
for (auto norm_region : {"AcrossChannels"}) {
#else
const int n = 1;
const int c = 5;
const int h = 2;
const int w = 4;
const int num = 5;
const float k = 1.0;
const float alpha = 1e-4;
const float beta = 0.75;
const std::string norm_region = "AcrossChannels";
#endif // GRID_FP16_LOOP_TEST
LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " "
<< c << " " << h << " " << w << " ========";
LOG(INFO) << "LRN parameters: ";
LOG(INFO) << "num: " << num << ", k: " << k
<< ", alpha: " << alpha << ", beta: " << beta
<< ", norm_region: " << norm_region;
auto kernels = KernelRegistry::Global().Create(
"lrn",
TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault));
ASSERT_FALSE(kernels.empty());
auto kernel = std::move(kernels.front());
LOG(INFO) << "get kernel:" << kernel->doc();
lite::Tensor x, out;
operators::LrnParam param;
param.X = &x;
param.Out = &out;
param.n = num;
param.k = k;
param.alpha = alpha;
param.beta = beta;
param.norm_region = norm_region;
std::unique_ptr<KernelContext> context(new KernelContext);
context->As<OpenCLContext>().InitOnce();
kernel->SetParam(param);
std::unique_ptr<KernelContext> lrn_context(
new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(lrn_context->As<OpenCLContext>()));
kernel->SetContext(std::move(lrn_context));
const DDim in_dim =
DDim(std::vector<DDim::value_type>{n, c, h, w});
const DDim out_dim =
DDim(std::vector<DDim::value_type>{n, c, h, w});
x.Resize(in_dim);
out.Resize(out_dim);
std::default_random_engine engine;
std::uniform_real_distribution<float> dist(-1, 1);
int sum = n * c * h * w;
std::vector<float> input_v(sum);
for (auto& i : input_v) {
i = dist(engine);
}
LOG(INFO) << "prepare input";
CLImageConverterDefault* default_converter =
new CLImageConverterDefault();
DDim x_image_shape =
default_converter->InitImageDimInfoWith(in_dim);
LOG(INFO) << "x_image_shape = " << x_image_shape[0] << " "
<< x_image_shape[1];
std::vector<half_t> x_image_data(
x_image_shape.production() * 4); // 4 : RGBA
default_converter->NCHWToImage(
input_v.data(), x_image_data.data(), in_dim);
auto* x_image = x.mutable_data<half_t, cl::Image2D>(
x_image_shape[0],
x_image_shape[1],
x_image_data.data());
// LOG(INFO) << "x_image:" << x_image;
DDim out_image_shape =
default_converter->InitImageDimInfoWith(out_dim);
LOG(INFO) << "out_image_shape = " << out_image_shape[0]
<< " " << out_image_shape[1];
auto* out_image = out.mutable_data<half_t, cl::Image2D>(
out_image_shape[0], out_image_shape[1]);
// LOG(INFO) << "out_image:" << out_image;
kernel->Launch();
auto* wait_list =
context->As<OpenCLContext>().cl_wait_list();
auto* out_ptr = param.Out->data<half_t, cl::Image2D>();
auto it = wait_list->find(out_ptr);
if (it != wait_list->end()) {
VLOG(4) << "--- Find the sync event for the target cl "
"tensor. ---";
auto& event = *(it->second);
event.wait();
} else {
LOG(FATAL) << "Could not find the sync event for the "
"target cl tensor.";
}
std::unique_ptr<float[]> out_ref(
new float[out_dim.production()]);
lrn_ref(input_v.data(),
in_dim,
out_ref.get(),
num,
k,
alpha,
beta,
norm_region);
const size_t cl_image2d_row_pitch{0};
const size_t cl_image2d_slice_pitch{0};
half_t* out_image_data =
new half_t[40000]; // out_image_shape.production() *
// 4];
TargetWrapperCL::ImgcpySync(out_image_data,
out_image,
out_image_shape[0],
out_image_shape[1],
cl_image2d_row_pitch,
cl_image2d_slice_pitch,
IoDirection::DtoH);
float* out_data =
new float[40000]; // out_image_shape.production() * 4];
default_converter->ImageToNCHW(
out_image_data, out_data, out_image_shape, out_dim);
// result
#ifdef LRN_FP16_PRINT_RESULT
LOG(INFO)
<< "---- print kernel result (input -> output) ----";
for (int eidx = 0; eidx < in_dim.production(); ++eidx) {
std::cout << input_v[eidx] << " -> " << out_data[eidx]
<< std::endl;
}
#endif // LRN_FP16_PRINT_RESULT
for (int i = 0; i < out_dim.production(); i++) {
auto abs_diff = abs(out_data[i] - out_ref[i]);
auto relative_diff =
COMPUTE_RELATIVE_DIFF(out_data[i], out_ref[i]);
EXPECT_EQ((relative_diff <= FP16_MAX_DIFF) ||
(abs_diff <= FP16_MAX_DIFF),
true);
if ((relative_diff > FP16_MAX_DIFF) &&
(abs_diff > FP16_MAX_DIFF)) {
LOG(ERROR) << "error idx: " << i << ", input_v[" << i
<< "]: " << input_v[i] << ", output_data["
<< i << "]: " << out_data[i] << ", out_ref["
<< i << "]:" << out_ref[i]
<< " abs_diff:" << abs_diff
<< " relative_diff:" << relative_diff
<< " FP16_MAX_DIFF:" << FP16_MAX_DIFF;
}
}
#ifdef LRN_FP16_LOOP_TEST
} // norm_region
} // beta
} // alpha
} // k
} // num
} // w
} // h
} // c
} // n
#else
// nothing to do.
#endif
}
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(lrn, kOpenCL, kFP16, kImageDefault, ImageDefault);
......@@ -236,10 +236,10 @@ void resize(const uint8_t* src,
"vorr.s32 q10, q12, q12 \n"
"vorr.s32 q11, q12, q12 \n"
"vmull.s16 q0, d2, %[_b0] \n"
"vmull.s16 q1, d3, %[_b0] \n"
"vmull.s16 q2, d6, %[_b1] \n"
"vmull.s16 q3, d7, %[_b1] \n"
"vmull.s16 q0, d2, %e[_b0] \n"
"vmull.s16 q1, d3, %e[_b0] \n"
"vmull.s16 q2, d6, %e[_b1] \n"
"vmull.s16 q3, d7, %e[_b1] \n"
"vsra.s32 q10, q0, #16 \n"
"vsra.s32 q11, q1, #16 \n"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册