Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cd08e4a9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cd08e4a9
编写于
10月 19, 2018
作者:
R
Ray Liu
提交者:
GitHub
10月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1165 from codeWorm2015/opencl
fix crash error
上级
d7db18fb
b7eb38c4
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
68 addition
and
56 deletion
+68
-56
src/framework/cl/cl_image.h
src/framework/cl/cl_image.h
+1
-1
src/framework/cl/cl_tensor.h
src/framework/cl/cl_tensor.h
+8
-2
src/framework/executor.cpp
src/framework/executor.cpp
+0
-1
src/operators/kernel/cl/batchnorm_kernel.cpp
src/operators/kernel/cl/batchnorm_kernel.cpp
+3
-4
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+3
-3
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+3
-3
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+3
-3
src/operators/kernel/cl/depthwise_conv_kernel.cpp
src/operators/kernel/cl/depthwise_conv_kernel.cpp
+3
-3
src/operators/kernel/cl/elementwise_add_kernel.cpp
src/operators/kernel/cl/elementwise_add_kernel.cpp
+1
-1
src/operators/kernel/cl/feed_kernel.cpp
src/operators/kernel/cl/feed_kernel.cpp
+3
-3
src/operators/kernel/cl/fetch_kernel.cpp
src/operators/kernel/cl/fetch_kernel.cpp
+7
-2
src/operators/kernel/cl/pool_kernel.cpp
src/operators/kernel/cl/pool_kernel.cpp
+3
-3
src/operators/kernel/cl/relu_kernel.cpp
src/operators/kernel/cl/relu_kernel.cpp
+3
-3
src/operators/kernel/cl/reshape_kernel.cpp
src/operators/kernel/cl/reshape_kernel.cpp
+3
-3
src/operators/kernel/cl/softmax_kernel.cpp
src/operators/kernel/cl/softmax_kernel.cpp
+3
-3
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+21
-18
未找到文件。
src/framework/cl/cl_image.h
浏览文件 @
cd08e4a9
...
...
@@ -308,7 +308,7 @@ class CLImage {
size_t
c_block_
;
DDim
tensor_dims_
;
DDim
image_dims_
;
float
*
tensor_data_
;
float
*
tensor_data_
=
nullptr
;
cl_context
context_
;
cl_command_queue
command_queue_
;
};
...
...
src/framework/cl/cl_tensor.h
浏览文件 @
cd08e4a9
...
...
@@ -97,7 +97,7 @@ class CLTensor : TensorBase {
inline
cl_mem
CLBuffer
()
{
check_memory_size
();
return
reinterpret_cast
<
cl_mem
>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
()));
}
template
<
typename
T
>
...
...
@@ -115,8 +115,14 @@ class CLTensor : TensorBase {
return
reinterpret_cast
<
T
*>
(
host_ptr_
);
}
int
memorySize
()
{
return
holder_
->
size
();
}
~
CLTensor
()
{
DLOG
<<
"~CLTensor"
;
if
(
host_ptr_
)
{
DLOG
<<
" delete host ptr "
;
delete
(
host_ptr_
);
host_ptr_
=
nullptr
;
}
...
...
@@ -125,7 +131,7 @@ class CLTensor : TensorBase {
private:
cl_context
context_
;
cl_command_queue
command_queue_
;
void
*
host_ptr_
;
void
*
host_ptr_
=
nullptr
;
struct
PlaceholderImpl
:
public
Placeholder
{
PlaceholderImpl
(
size_t
size
,
void
*
input
,
std
::
type_index
type
,
...
...
src/framework/executor.cpp
浏览文件 @
cd08e4a9
...
...
@@ -429,7 +429,6 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
}
#endif
DLOG
<<
" predict return nullptr"
;
auto
last_op
=
ops
.
rbegin
();
auto
output_map
=
(
*
last_op
)
->
Outputs
();
...
...
src/operators/kernel/cl/batchnorm_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -86,11 +86,10 @@ void BatchNormKernel<GPU_CL, float>::Compute(
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
new_bias
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
out
);
cl_event
out_event
=
param
.
OutputY
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
InputX
()
->
GetClEvent
();
//
cl_event out_event = param.OutputY()->GetClEvent();
//
cl_event wait_event = param.InputX()->GetClEvent();
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
}
template
class
BatchNormKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -236,12 +236,12 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
//
cl_event out_event = param.Output()->GetClEvent();
//
cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -117,12 +117,12 @@ void ConvAddKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
//
cl_event out_event = param.Output()->GetClEvent();
//
cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -111,12 +111,12 @@ void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> ¶m) {
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
//
cl_event out_event = param.Output()->GetClEvent();
//
cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/depthwise_conv_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -76,12 +76,12 @@ void DepthwiseConvKernel<GPU_CL, float>::Compute(
CL_CHECK_ERRORS
(
status
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
//
cl_event out_event = param.Output()->GetClEvent();
//
cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/elementwise_add_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -82,7 +82,7 @@ void ElementwiseAddKernel<GPU_CL, float>::Compute(
cl_event
wait_event
=
param
.
InputX
()
->
GetClEvent
();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
1
,
&
wait_event
,
&
out_event
);
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
DLOG
<<
"error:bias dims is error"
;
...
...
src/operators/kernel/cl/feed_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -30,7 +30,7 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
cl_int
status
;
auto
output
=
param
.
Out
();
const
Tensor
*
input
=
param
.
InputX
();
DLOG
<<
*
input
;
//
DLOG << *input;
const
float
*
input_data
=
input
->
data
<
float
>
();
int
numel
=
input
->
numel
();
cl_mem
cl_image
=
output
->
GetCLImage
();
...
...
@@ -52,10 +52,10 @@ void FeedKernel<GPU_CL, float>::Compute(const FeedParam<GPU_CL> ¶m) {
size_t
global_work_size
[
2
]
=
{
width
,
height
};
cl_event
out_event
=
param
.
Out
()
->
GetClEvent
();
//
cl_event out_event = param.Out()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
&
out_event
);
NULL
,
global_work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
...
...
src/operators/kernel/cl/fetch_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -73,9 +73,14 @@ void FetchKernel<GPU_CL, float>::Compute(const FetchParam<GPU_CL> ¶m) {
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
size_batch
);
}
cl_event
wait_event
=
param
.
Inp
utX
()
->
GetClEvent
();
// cl_event wait_event = param.Inpd
utX()->GetClEvent();
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
NULL
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
// printf(" before finish \n");
// clFlsh(this->cl_helper_.CLCommandQueue());
// clFinish(this->cl_helper_.CLCommandQueue());
// printf(" after finish \n");
memcpy
(
out
->
data
<
float
>
(),
out_cl_tensor
.
Data
<
float
>
(),
out
->
memory_size
());
}
...
...
src/operators/kernel/cl/pool_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -63,10 +63,10 @@ void PoolKernel<GPU_CL, float>::Compute(const PoolParam<GPU_CL> ¶m) {
clSetKernelArg
(
kernel
,
10
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
cl_mem
),
&
out
);
cl_event
out_event
=
param
.
Output
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
Input
()
->
GetClEvent
();
//
cl_event out_event = param.Output()->GetClEvent();
//
cl_event wait_event = param.Input()->GetClEvent();
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
}
template
class
PoolKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/relu_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -50,12 +50,12 @@ void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL>& param) {
// clSetKernelArg(kernel_p1, 1, sizeof(cl_mem), &outputImage);
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()};
cl_event
out_event
=
param
.
Out
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
InputX
()
->
GetClEvent
();
//
cl_event out_event = param.Out()->GetClEvent();
//
cl_event wait_event = param.InputX()->GetClEvent();
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
work_size
,
NULL
,
1
,
&
wait_event
,
&
out_event
);
work_size
,
NULL
,
0
,
NULL
,
NULL
);
// clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel_p1, 3,
// NULL,
// work_size, NULL, 0, NULL, NULL);
...
...
src/operators/kernel/cl/reshape_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -55,11 +55,11 @@ void ReshapeKernel<GPU_CL, float>::Compute(const ReshapeParam<GPU_CL> ¶m) {
clSetKernelArg
(
kernel
,
9
,
sizeof
(
cl_int
),
&
odims
[
1
]);
const
size_t
work_size
[
2
]
=
{
output
->
ImageWidth
(),
output
->
ImageHeight
()};
cl_event
out_event
=
param
.
Out
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
InputX
()
->
GetClEvent
();
//
cl_event out_event = param.Out()->GetClEvent();
//
cl_event wait_event = param.InputX()->GetClEvent();
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
work_size
,
NULL
,
1
,
&
wait_event
,
&
out_event
);
work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
template
class
ReshapeKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/softmax_kernel.cpp
浏览文件 @
cd08e4a9
...
...
@@ -55,11 +55,11 @@ void SoftmaxKernel<GPU_CL, float>::Compute(const SoftmaxParam<GPU_CL> ¶m) {
// clSetKernelArg(kernel, 4, sizeof(int), &dims[2]);
// clSetKernelArg(kernel, 5, sizeof(int), &dims[3]);
cl_event
out_event
=
param
.
Out
()
->
GetClEvent
();
cl_event
wait_event
=
param
.
InputX
()
->
GetClEvent
();
//
cl_event out_event = param.Out()->GetClEvent();
//
cl_event wait_event = param.InputX()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
1
,
&
wait_event
,
&
out_event
);
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
...
...
test/net/test_mobilenet_GPU.cpp
浏览文件 @
cd08e4a9
...
...
@@ -26,32 +26,35 @@ int main() {
auto
isok
=
paddle_mobile
.
Load
(
g_mobilenet
,
true
);
if
(
isok
)
{
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time
1
)
<<
"ms"
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time
2
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224_banana
,
&
input
,
dims
);
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
// std::vector<float>::iterator biggest =
// std::max_element(std::begin(vec_result), std::end(vec_result));
// std::cout << " Max element is " << *biggest << " at position "
// << std::distance(std::begin(vec_result), biggest) <<
// std::endl;
// for (int i = 0; i < 10; ++i) {
// auto vec_result = paddle_mobile.Predict(input, dims);
// }
// auto time3 = paddle_mobile::time();
// for (int i = 0; i < 10; ++i) {
// auto vec_result = paddle_mobile.Predict(input, dims);
// }
// DLOG << vec_result;
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
// auto time4 = paddle_mobile::time();
// std::cout << "predict cost :" << paddle_mobile::time_diff(time3,
// time4) / 10 << "ms"
// << std::endl;
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
auto
time3
=
paddle_mobile
::
time
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
auto
time4
=
paddle_mobile
::
time
();
std
::
cout
<<
"predict cost :"
<<
paddle_mobile
::
time_diff
(
time3
,
time4
)
/
10
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>::
iterator
biggest
=
std
::
max_element
(
std
::
begin
(
vec_result
),
std
::
end
(
vec_result
));
std
::
cout
<<
" Max element is "
<<
*
biggest
<<
" at position "
<<
std
::
distance
(
std
::
begin
(
vec_result
),
biggest
)
<<
std
::
endl
;
}
std
::
cout
<<
"如果结果Nan请查看: test/images/g_test_image_1x3x224x224_banana "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录