Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cc07fff2
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cc07fff2
编写于
6月 13, 2018
作者:
E
eclipsycn
提交者:
GitHub
6月 13, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #415 from smilejames/develop
optimize gemm
上级
87cd5405
04ecc0e9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
9 addition
and
20 deletion
+9
-20
src/operators/kernel/arm/depthwise_conv_kernel.cpp
src/operators/kernel/arm/depthwise_conv_kernel.cpp
+0
-13
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+6
-4
src/operators/math/gemm.h
src/operators/math/gemm.h
+3
-3
未找到文件。
src/operators/kernel/arm/depthwise_conv_kernel.cpp
浏览文件 @
cc07fff2
...
@@ -28,7 +28,6 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -28,7 +28,6 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
Tensor
filter
=
*
param
.
Filter
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
...
@@ -40,7 +39,6 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -40,7 +39,6 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
...
@@ -61,18 +59,13 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -61,18 +59,13 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
}
// DLOG << " col_shape = " << col_shape;
// DLOG << " col_matrix_shape = " << col_matrix_shape;
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
// DLOG << " input_shape = " << input_shape;
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
// DLOG << " filter.dims() = " << filter.dims();
framework
::
DDim
output_matrix_shape
=
{
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
...
@@ -87,8 +80,6 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -87,8 +80,6 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
// DLOG << " in_batch.dims() = " << in_batch.dims();
// DLOG << " out_batch.dims() = " << out_batch.dims();
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
...
@@ -111,13 +102,9 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
...
@@ -111,13 +102,9 @@ void DepthwiseConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
// gemm
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
// DLOG << " out_slice " << out_slice.dims();
// DLOG << " filter_slice " << filter_slice.dims();
// DLOG << " col_matrix " << col_matrix.dims();
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
static_cast
<
float
>
(
0
));
auto
filter_ptr
=
filter_slice
.
data
<
float
>
();
}
}
}
}
}
}
...
...
src/operators/math/gemm.cpp
浏览文件 @
cc07fff2
...
@@ -114,10 +114,12 @@ void PackMatrixB_(int k, int n, int paddingN, const float *B, int ldb,
...
@@ -114,10 +114,12 @@ void PackMatrixB_(int k, int n, int paddingN, const float *B, int ldb,
for
(
j
=
0
;
j
<
n
-
paddingN
;
j
+=
NR
)
{
for
(
j
=
0
;
j
<
n
-
paddingN
;
j
+=
NR
)
{
for
(
i
=
0
;
i
<
k
;
++
i
)
{
for
(
i
=
0
;
i
<
k
;
++
i
)
{
Bij
=
&
B
(
i
,
j
);
Bij
=
&
B
(
i
,
j
);
*
buffer
++
=
*
Bij
;
asm
volatile
(
*
buffer
++
=
*
(
Bij
+
1
);
"vld1.32 {q0}, [%[Bij]]
\n\t
"
*
buffer
++
=
*
(
Bij
+
2
);
"vst1.32 {q0}, [%[buffer]]!
\n\t
"
*
buffer
++
=
*
(
Bij
+
3
);
:
[
buffer
]
"+r"
(
buffer
)
:
[
Bij
]
"r"
(
Bij
)
:
"memory"
,
"q0"
);
}
}
}
}
if
(
paddingN
!=
0
)
{
if
(
paddingN
!=
0
)
{
...
...
src/operators/math/gemm.h
浏览文件 @
cc07fff2
...
@@ -20,9 +20,9 @@ limitations under the License. */
...
@@ -20,9 +20,9 @@ limitations under the License. */
#define C(i, j) C[(i)*ldc + (j)]
#define C(i, j) C[(i)*ldc + (j)]
// 分块计算的块大小,mc 与 kc 分别对应分块计算时的 m 与 k
// 分块计算的块大小,mc 与 kc 分别对应分块计算时的 m 与 k
#define MC
384
#define MC
128
#define KC
384
#define KC
128
#define NC
4096
#define NC
1024
#define MR 4
#define MR 4
#define NR 4
#define NR 4
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录