提交 cbf8a973 编写于 作者: H hjchen2

Add roi_perspective_transform op

上级 91c5d1a0
......@@ -108,6 +108,7 @@ const char *G_OP_TYPE_SLICE = "slice";
const char *G_OP_TYPE_ANCHOR_GENERATOR = "anchor_generator";
const char *G_OP_TYPE_GENERATE_PROPOSALS = "generate_proposals";
const char *G_OP_TYPE_PSROI_POOL = "psroi_pool";
const char *G_OP_TYPE_ROI_PERSPECTIVE = "roi_perspective_transform";
std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
......@@ -204,5 +205,6 @@ std::unordered_map<
{G_OP_TYPE_GENERATE_PROPOSALS,
{{"Scores", "BboxDeltas", "ImInfo", "Anchors", "Variances"},
{"RpnRois", "RpnRoiProbs"}}},
{G_OP_TYPE_PSROI_POOL, {{"X", "ROIs"}, {"Out"}}}};
{G_OP_TYPE_PSROI_POOL, {{"X", "ROIs"}, {"Out"}}},
{G_OP_TYPE_ROI_PERSPECTIVE, {{"X", "ROIs"}, {"Out"}}}};
} // namespace paddle_mobile
......@@ -196,6 +196,7 @@ extern const char *G_OP_TYPE_SLICE;
extern const char *G_OP_TYPE_ANCHOR_GENERATOR;
extern const char *G_OP_TYPE_GENERATE_PROPOSALS;
extern const char *G_OP_TYPE_PSROI_POOL;
extern const char *G_OP_TYPE_ROI_PERSPECTIVE;
extern std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
......
......@@ -315,3 +315,6 @@ LOAD_OP1(generate_proposals, CPU);
#ifdef PSROI_POOL_OP
LOAD_OP1(psroi_pool, CPU);
#endif
#ifdef ROI_PERSPECTIVE_OP
LOAD_OP1(roi_perspective_transform, CPU);
#endif
......@@ -64,6 +64,22 @@ void PSRoiPoolOp<DeviceType, T>::InferShape() const {
}
#endif
#ifdef ROI_PERSPECTIVE_OP
template <typename DeviceType, typename T>
void RoiPerspectiveOp<DeviceType, T>::InferShape() const {
const auto &input_dims = this->param_.input_x_->dims();
const auto &rois_dims = this->param_.input_rois_->dims();
const int transformed_height = this->param_.transformed_height_;
const int transformed_width = this->param_.transformed_width_;
std::vector<int64_t> out_dims_v({rois_dims[0], // num_rois
input_dims[1], // channels
static_cast<int64_t>(transformed_height),
static_cast<int64_t>(transformed_width)});
auto out_dims = framework::make_ddim(out_dims_v);
this->param_.output_->Resize(out_dims);
}
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -78,4 +94,7 @@ REGISTER_OPERATOR_CPU(generate_proposals, ops::ProposalOp);
#ifdef PSROI_POOL_OP
REGISTER_OPERATOR_CPU(psroi_pool, ops::PSRoiPoolOp);
#endif
#ifdef ROI_PERSPECTIVE_OP
REGISTER_OPERATOR_CPU(roi_perspective_transform, ops::RoiPerspectiveOp);
#endif
#endif
......@@ -34,5 +34,9 @@ DECLARE_OPERATOR(Proposal, ProposalParam, ProposalKernel);
DECLARE_OPERATOR(PSRoiPool, PSRoiPoolParam, PSRoiPoolKernel);
#endif
#ifdef ROI_PERSPECTIVE_OP
DECLARE_OPERATOR(RoiPerspective, RoiPerspectiveParam, RoiPerspectiveKernel);
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -22,8 +22,8 @@ namespace operators {
void BiLinearResizeTensor(const float* src, const int src_height,
const int src_width, float* dst, const int dst_height,
const int dst_width) {
const float scale_w = src_width / (float)dst_width;
const float scale_h = src_height / (float)dst_height;
const float scale_w = src_width / static_cast<float>(dst_width);
const float scale_h = src_height / static_cast<float>(dst_height);
float* dst_data = dst;
const float* src_data = src;
......@@ -33,8 +33,8 @@ void BiLinearResizeTensor(const float* src, const int src_height,
int src_h = std::floor(fh);
fh -= src_h;
const float w_h0 = std::abs((float)1.0 - fh);
const float w_h1 = std::abs(fh);
const float w_h0 = fabs(1.0 - fh);
const float w_h1 = fabs(fh);
const int dst_offset_1 = dst_h * dst_width;
const int src_offset_1 = src_h * src_width;
......@@ -45,8 +45,8 @@ void BiLinearResizeTensor(const float* src, const int src_height,
float fw = dst_w * scale_w;
int src_w = std::floor(fw);
fw -= src_w;
const float w_w0 = std::abs((float)1.0 - fw);
const float w_w1 = std::abs(fw);
const float w_w0 = fabs(1.0 - fw);
const float w_w1 = fabs(fw);
float dst_value = 0;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef ROI_PERSPECTIVE_OP
#include <cmath>
#include "operators/kernel/detection_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename T>
inline bool GT_E(T a, T b) {
return (a > b) || fabs(a - b) < 1e-4;
}
template <typename T>
inline bool LT_E(T a, T b) {
return (a < b) || fabs(a - b) < 1e-4;
}
// check if (x, y) is in the boundary of roi
template <typename T>
bool in_quad(T x, T y, T roi_x[], T roi_y[]) {
for (int i = 0; i < 4; i++) {
T xs = roi_x[i];
T ys = roi_y[i];
T xe = roi_x[(i + 1) % 4];
T ye = roi_y[(i + 1) % 4];
if (fabs(ys - ye) < 1e-4) {
if (fabs(y - ys) < 1e-4 && fabs(y - ye) < 1e-4 &&
GT_E<T>(x, std::min(xs, xe)) && LT_E<T>(x, std::max(xs, xe))) {
return true;
}
} else {
T intersec_x = (y - ys) * (xe - xs) / (ye - ys) + xs;
if (fabs(intersec_x - x) < 1e-4 && GT_E<T>(y, std::min(ys, ye)) &&
LT_E<T>(y, std::max(ys, ye))) {
return true;
}
}
}
int n_cross = 0;
for (int i = 0; i < 4; i++) {
T xs = roi_x[i];
T ys = roi_y[i];
T xe = roi_x[(i + 1) % 4];
T ye = roi_y[(i + 1) % 4];
if (fabs(ys - ye) < 1e-4) {
continue;
}
if (LT_E<T>(y, std::min(ys, ye)) || (y > std::max(ys, ye))) {
continue;
}
T intersec_x = (y - ys) * (xe - xs) / (ye - ys) + xs;
if (fabs(intersec_x - x) < 1e-4) {
return true;
}
if (intersec_x > x) {
n_cross++;
}
}
return (n_cross % 2 == 1);
}
template <typename T>
void get_transform_matrix(const int transformed_width,
const int transformed_height, T roi_x[], T roi_y[],
T matrix[]) {
T x0 = roi_x[0];
T x1 = roi_x[1];
T x2 = roi_x[2];
T x3 = roi_x[3];
T y0 = roi_y[0];
T y1 = roi_y[1];
T y2 = roi_y[2];
T y3 = roi_y[3];
// Estimate the height and width of RoI
T len1 = sqrt((x0 - x1) * (x0 - x1) + (y0 - y1) * (y0 - y1));
T len2 = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
T len3 = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));
T len4 = sqrt((x3 - x0) * (x3 - x0) + (y3 - y0) * (y3 - y0));
T estimated_height = (len2 + len4) / 2.0;
T estimated_width = (len1 + len3) / 2.0;
// Get the normalized height and normalized width
int normalized_height = transformed_height;
int normalized_width =
std::round(estimated_width * (normalized_height - 1) / estimated_height) +
1;
normalized_width = std::min(normalized_width, transformed_width);
T dx1 = x1 - x2;
T dx2 = x3 - x2;
T dx3 = x0 - x1 + x2 - x3;
T dy1 = y1 - y2;
T dy2 = y3 - y2;
T dy3 = y0 - y1 + y2 - y3;
matrix[6] = (dx3 * dy2 - dx2 * dy3) / (dx1 * dy2 - dx2 * dy1) /
(normalized_width - 1);
matrix[7] = (dx1 * dy3 - dx3 * dy1) / (dx1 * dy2 - dx2 * dy1) /
(normalized_height - 1);
matrix[8] = 1;
matrix[3] = (y1 - y0 + matrix[6] * (normalized_width - 1) * y1) /
(normalized_width - 1);
matrix[4] = (y3 - y0 + matrix[7] * (normalized_height - 1) * y3) /
(normalized_height - 1);
matrix[5] = y0;
matrix[0] = (x1 - x0 + matrix[6] * (normalized_width - 1) * x1) /
(normalized_width - 1);
matrix[1] = (x3 - x0 + matrix[7] * (normalized_height - 1) * x3) /
(normalized_height - 1);
matrix[2] = x0;
}
// Get the source coordinates in the input feature map.
// (u, v, w)^matrix = matrix * (out_w, out_h, 1)^matrix
// in_w = u / w
// in_h = v / w
template <typename T>
void get_source_coords(T matrix[], int out_w, int out_h, T *in_w, T *in_h) {
T u = matrix[0] * out_w + matrix[1] * out_h + matrix[2];
T v = matrix[3] * out_w + matrix[4] * out_h + matrix[5];
T w = matrix[6] * out_w + matrix[7] * out_h + matrix[8];
in_w[0] = u / w;
in_h[0] = v / w;
}
template <typename T>
void bilinear_interpolate(const T *in_data, const int channels, const int width,
const int height, int in_n, int in_c, T in_w, T in_h,
T *val) {
// Deal with cases that source coords are out of feature map boundary
if ((-0.5 > in_w) || (in_w > width - 0.5) || (-0.5 > in_h) ||
(in_h > height - 0.5)) {
// empty
val[0] = 0.0;
return;
}
if (in_w < 0) {
in_w = 0;
}
if (in_h < 0) {
in_h = 0;
}
int in_w_floor = floor(in_w);
int in_h_floor = floor(in_h);
int in_w_ceil;
int in_h_ceil;
if (GT_E<T>(in_w_floor, width - 1)) {
in_w_ceil = in_w_floor = width - 1;
in_w = static_cast<T>(in_w_floor);
} else {
in_w_ceil = in_w_floor + 1;
}
if (GT_E<T>(in_h_floor, height - 1)) {
in_h_ceil = in_h_floor = height - 1;
in_h = static_cast<T>(in_h_floor);
} else {
in_h_ceil = in_h_floor + 1;
}
T w_floor = in_w - in_w_floor;
T h_floor = in_h - in_h_floor;
T w_ceil = 1 - w_floor;
T h_ceil = 1 - h_floor;
const T *data = in_data + (in_n * channels + in_c) * height * width;
// Do bilinear interpolation
T v1 = data[in_h_floor * width + in_w_floor];
T v2 = data[in_h_ceil * width + in_w_floor];
T v3 = data[in_h_ceil * width + in_w_ceil];
T v4 = data[in_h_floor * width + in_w_ceil];
T w1 = w_ceil * h_ceil;
T w2 = w_ceil * h_floor;
T w3 = w_floor * h_floor;
T w4 = w_floor * h_ceil;
val[0] = w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4;
}
template <>
bool RoiPerspectiveKernel<CPU, float>::Init(RoiPerspectiveParam<CPU> *param) {
return true;
}
template <>
void RoiPerspectiveKernel<CPU, float>::Compute(
const RoiPerspectiveParam<CPU> &param) {
const auto *input_x = param.input_x_;
const auto *input_rois = param.input_rois_;
auto *output = param.output_;
const auto &in_dims = input_x->dims();
const int channels = in_dims[1];
const int in_height = in_dims[2];
const int in_width = in_dims[3];
const int rois_num = input_rois->dims()[0];
const int transformed_height = param.transformed_height_;
const int transformed_width = param.transformed_width_;
const float spatial_scale = param.spatial_scale_;
const float *input_data = input_x->data<float>();
const float *rois_data = input_rois->data<float>();
float *output_data = output->mutable_data<float>();
std::vector<int> roi2image(rois_num);
const auto &lod = input_rois->lod().back();
for (size_t i = 0; i < lod.size() - 1; ++i) {
for (size_t j = lod[i]; j < lod[i + 1]; ++j) {
roi2image[j] = i;
}
}
for (int n = 0; n < rois_num; ++n) {
const float *n_rois = rois_data + n * 8;
float roi_x[4];
float roi_y[4];
for (int k = 0; k < 4; ++k) {
roi_x[k] = n_rois[2 * k] * spatial_scale;
roi_y[k] = n_rois[2 * k + 1] * spatial_scale;
}
int image_id = roi2image[n];
// Get transform matrix
float transform_matrix[9];
get_transform_matrix<float>(transformed_width, transformed_height, roi_x,
roi_y, transform_matrix);
for (int c = 0; c < channels; ++c) {
for (int out_h = 0; out_h < transformed_height; ++out_h) {
for (int out_w = 0; out_w < transformed_width; ++out_w) {
int out_index =
n * channels * transformed_height * transformed_width +
c * transformed_height * transformed_width +
out_h * transformed_width + out_w;
float in_w, in_h;
get_source_coords<float>(transform_matrix, out_w, out_h, &in_w,
&in_h);
if (in_quad<float>(in_w, in_h, roi_x, roi_y)) {
if ((-0.5 > in_w) || (in_w > (in_width - 0.5)) || (-0.5 > in_h) ||
(in_h > (in_height - 0.5))) {
output_data[out_index] = 0.0;
} else {
bilinear_interpolate<float>(input_data, channels, in_width,
in_height, image_id, c, in_w, in_h,
output_data + out_index);
}
} else {
output_data[out_index] = 0.0;
}
}
}
}
}
}
} // namespace operators
} // namespace paddle_mobile
#endif // ROI_PERSPECTIVE_OP
......@@ -136,5 +136,35 @@ class PSRoiPoolParam : public OpParam {
DECLARE_KERNEL(PSRoiPool, PSRoiPoolParam);
#endif
#ifdef ROI_PERSPECTIVE_OP
template <typename Dtype>
class RoiPerspectiveParam : public OpParam {
public:
RoiPerspectiveParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
input_x_ = OpParam::GetVarValue<framework::Tensor>("X", inputs, scope);
input_rois_ =
OpParam::GetVarValue<framework::LoDTensor>("ROIs", inputs, scope);
output_ = OpParam::GetVarValue<framework::Tensor>("Out", outputs, scope);
spatial_scale_ = OpParam::GetAttr<float>("spatial_scale", attrs);
transformed_height_ = OpParam::GetAttr<int>("transformed_height", attrs);
transformed_width_ = OpParam::GetAttr<int>("transformed_width", attrs);
}
public:
framework::Tensor *input_x_;
framework::LoDTensor *input_rois_;
framework::Tensor *output_;
float spatial_scale_;
int transformed_height_;
int transformed_width_;
};
DECLARE_KERNEL(RoiPerspective, RoiPerspectiveParam);
#endif
} // namespace operators
} // namespace paddle_mobile
......@@ -291,6 +291,7 @@ if(NOT FOUND_MATCH)
set(ANCHOR_GENERATOR_OP ON)
set(PROPOSAL_OP ON)
set(PSROI_POOL_OP ON)
set(ROI_PERSPECTIVE_OP ON)
endif()
# option(BATCHNORM_OP "" ON)
......@@ -585,3 +586,6 @@ endif()
if (PSROI_POOL_OP)
add_definitions(-DPSROI_POOL_OP)
endif()
if (ROI_PERSPECTIVE_OP)
add_definitions(-DROI_PERSPECTIVE_OP)
endif()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册