提交 cbf28148 编写于 作者: R Ruilong Liu 提交者: GitHub

Merge pull request #644 from smilejames/develop

optimize gemm
...@@ -92,8 +92,8 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb, ...@@ -92,8 +92,8 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
*/ */
// 将A矩阵分块复制到连续内存(RowMajor) // 将A矩阵分块复制到连续内存(RowMajor)
void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda, void PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
float *buffer) { float *buffer) {
const float *a0, *a1, *a2, *a3; const float *a0, *a1, *a2, *a3;
for (int i = 0; i < m - m_tail; i += MR) { for (int i = 0; i < m - m_tail; i += MR) {
a0 = A + i * lda; a0 = A + i * lda;
...@@ -131,9 +131,62 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda, ...@@ -131,9 +131,62 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
} }
} }
void PackMatrixA_6r(int m, int k, int m_tail, const float *A, int lda,
float *buffer) {
const float *a0, *a1, *a2, *a3, *a4, *a5;
for (int i = 0; i < m - m_tail; i += MR) {
a0 = A + i * lda;
a1 = A + (i + 1) * lda;
a2 = A + (i + 2) * lda;
a3 = A + (i + 3) * lda;
a4 = A + (i + 4) * lda;
a5 = A + (i + 5) * lda;
for (int j = 0; j < k; ++j) {
*buffer++ = *a0++;
*buffer++ = *a1++;
*buffer++ = *a2++;
*buffer++ = *a3++;
*buffer++ = *a4++;
*buffer++ = *a5++;
}
}
int i = m - m_tail;
a0 = &A(i, 0);
a1 = a0 + lda;
a2 = a0 + 2 * lda;
a3 = a0 + 3 * lda;
a4 = a0 + 4 * lda;
a5 = a0 + 5 * lda;
if (m_tail != 0) {
if (m_tail <= 5) {
a5 = zero;
}
if (m_tail <= 4) {
a4 = zero;
}
if (m_tail <= 3) {
a3 = zero;
}
if (m_tail <= 2) {
a2 = zero;
}
if (m_tail <= 1) {
a1 = zero;
}
for (int j = 0; j < k; ++j) {
*buffer++ = *a0++;
*buffer++ = *a1++;
*buffer++ = *a2++;
*buffer++ = *a3++;
*buffer++ = *a4++;
*buffer++ = *a5++;
}
}
}
// 将B矩阵分块复制到连续内存(RowMajor) // 将B矩阵分块复制到连续内存(RowMajor)
void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb, void PackMatrixB_8c(int k, int n, int n_tail, const float *B, int ldb,
float *buffer) { float *buffer) {
const float *b0; const float *b0;
for (int j = 0; j < n - n_tail; j += NR) { for (int j = 0; j < n - n_tail; j += NR) {
for (int i = 0; i < k; ++i) { for (int i = 0; i < k; ++i) {
...@@ -188,7 +241,8 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b, ...@@ -188,7 +241,8 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
for (int j = 0; j < nc; j += NR) { for (int j = 0; j < nc; j += NR) {
for (int i = 0; i < mc; i += MR) { for (int i = 0; i < mc; i += MR) {
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); // AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); // AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
} }
} }
...@@ -218,7 +272,8 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a, ...@@ -218,7 +272,8 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
for (int j = 0; j < nc; j += NR) { for (int j = 0; j < nc; j += NR) {
for (int i = 0; i < mc; i += MR) { for (int i = 0; i < mc; i += MR) {
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); // AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC); // AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
} }
} }
...@@ -1868,22 +1923,22 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda, ...@@ -1868,22 +1923,22 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc, bool relu) { const float *B, int ldb, float beta, float *C, int ldc, bool relu) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73) // L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster) // L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int L1 = 30 * 1024; int L1 = 32 * 1024;
int L2 = 1 * 1024 * 1024; int L2 = 0.5 * 1024 * 1024;
KC = k; KC = k;
MC = L2 / (2 * KC * sizeof(float)); MC = L1 / (KC * sizeof(float));
NC = MC; NC = L2 / (KC * sizeof(float));
// make sure MC is multiple of 4, and NC is multiple of 8 // make sure MC is multiple of MR, and NC is multiple of NR
int mblock_num = (m + MC - 1) / MC; int mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num; MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + 4 - 1) / 4 * 4; MC = (MC + MR - 1) / MR * MR;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n"; // DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int nblock_num = (n + NC - 1) / NC; int nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num; NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + 8 - 1) / 8 * 8; NC = (NC + NR - 1) / NR * NR;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n"; // DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA = static_cast<float *>( packedA = static_cast<float *>(
...@@ -1901,10 +1956,10 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda, ...@@ -1901,10 +1956,10 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
int mc, nc; int mc, nc;
for (int j = 0; j < n; j += NC) { for (int j = 0; j < n; j += NC) {
nc = s_min(n - j, NC); nc = s_min(n - j, NC);
PackMatrixB_(KC, nc, nc % NR, &B(0, j), ldb, packedB); PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
for (int i = 0; i < m; i += MC) { for (int i = 0; i < m; i += MC) {
mc = s_min(m - i, MC); mc = s_min(m - i, MC);
PackMatrixA_(mc, KC, mc % MR, &A(i, 0), lda, packedA); PackMatrixA_6r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
InnerKernel(mc, nc, alpha, packedA, packedB, beta, packedC, &C(i, j), ldc, InnerKernel(mc, nc, alpha, packedA, packedB, beta, packedC, &C(i, j), ldc,
relu); relu);
} }
...@@ -1921,22 +1976,22 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda, ...@@ -1921,22 +1976,22 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
bool relu, float *new_scale, float *new_bias) { bool relu, float *new_scale, float *new_bias) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73) // L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster) // L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int L1 = 30 * 1024; int L1 = 32 * 1024;
int L2 = 1 * 1024 * 1024; int L2 = 0.5 * 1024 * 1024;
KC = k; KC = k;
MC = L2 / (2 * KC * sizeof(float)); MC = L1 / (KC * sizeof(float));
NC = MC; NC = L2 / (KC * sizeof(float));
// make sure MC is multiple of 4, and NC is multiple of 8 // make sure MC is multiple of MR, and NC is multiple of NR
int mblock_num = (m + MC - 1) / MC; int mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num; MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + 4 - 1) / 4 * 4; MC = (MC + MR - 1) / MR * MR;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n"; // DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int nblock_num = (n + NC - 1) / NC; int nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num; NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + 8 - 1) / 8 * 8; NC = (NC + NR - 1) / NR * NR;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n"; // DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA = static_cast<float *>( packedA = static_cast<float *>(
...@@ -1954,10 +2009,10 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda, ...@@ -1954,10 +2009,10 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
int mc, nc; int mc, nc;
for (int j = 0; j < n; j += NC) { for (int j = 0; j < n; j += NC) {
nc = s_min(n - j, NC); nc = s_min(n - j, NC);
PackMatrixB_(KC, nc, nc % NR, &B(0, j), ldb, packedB); PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
for (int i = 0; i < m; i += MC) { for (int i = 0; i < m; i += MC) {
mc = s_min(m - i, MC); mc = s_min(m - i, MC);
PackMatrixA_(mc, KC, mc % MR, &A(i, 0), lda, packedA); PackMatrixA_6r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
InnerKernelWithBn(mc, nc, alpha, packedA, packedB, beta, packedC, InnerKernelWithBn(mc, nc, alpha, packedA, packedB, beta, packedC,
&C(i, j), ldc, relu, new_scale + i, new_bias + i); &C(i, j), ldc, relu, new_scale + i, new_bias + i);
} }
...@@ -1969,6 +2024,221 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda, ...@@ -1969,6 +2024,221 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile::memory::Free(zero); paddle_mobile::memory::Free(zero);
} }
void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc) {
#if __ARM_NEON
#if __aarch64__
// init C
float32x4_t cv0 = vdupq_n_f32(0.0);
float32x4_t cv1 = vdupq_n_f32(0.0);
float32x4_t cv2 = vdupq_n_f32(0.0);
float32x4_t cv3 = vdupq_n_f32(0.0);
float32x4_t cv4 = vdupq_n_f32(0.0);
float32x4_t cv5 = vdupq_n_f32(0.0);
float32x4_t cv6 = vdupq_n_f32(0.0);
float32x4_t cv7 = vdupq_n_f32(0.0);
float32x4_t cv8 = vdupq_n_f32(0.0);
float32x4_t cv9 = vdupq_n_f32(0.0);
float32x4_t cv10 = vdupq_n_f32(0.0);
float32x4_t cv11 = vdupq_n_f32(0.0);
float32x4_t av;
float32x4_t bv0;
float32x4_t bv1;
float32x2_t av01;
float32x2_t av23;
float32x2_t av45;
for (int p = 0; p < k; p += 1) {
av = vld1q_f32(a);
av01 = vget_low_f32(av);
av23 = vget_high_f32(av);
av45 = vld1_f32(a + 4);
bv0 = vld1q_f32(b);
bv1 = vld1q_f32(b + 4);
cv0 = vmlaq_lane_f32(cv0, bv0, av01, 0);
cv1 = vmlaq_lane_f32(cv1, bv1, av01, 0);
cv2 = vmlaq_lane_f32(cv2, bv0, av01, 1);
cv3 = vmlaq_lane_f32(cv3, bv1, av01, 1);
cv4 = vmlaq_lane_f32(cv4, bv0, av23, 0);
cv5 = vmlaq_lane_f32(cv5, bv1, av23, 0);
cv6 = vmlaq_lane_f32(cv6, bv0, av23, 1);
cv7 = vmlaq_lane_f32(cv7, bv1, av23, 1);
cv8 = vmlaq_lane_f32(cv8, bv0, av45, 0);
cv9 = vmlaq_lane_f32(cv9, bv1, av45, 0);
cv10 = vmlaq_lane_f32(cv10, bv0, av45, 1);
cv11 = vmlaq_lane_f32(cv11, bv1, av45, 1);
a += MR;
b += NR;
}
vst1q_f32(c, cv0);
vst1q_f32(c + 4, cv1);
vst1q_f32(c + ldc, cv2);
vst1q_f32(c + ldc + 4, cv3);
vst1q_f32(c + 2 * ldc, cv4);
vst1q_f32(c + 2 * ldc + 4, cv5);
vst1q_f32(c + 3 * ldc, cv6);
vst1q_f32(c + 3 * ldc + 4, cv7);
vst1q_f32(c + 4 * ldc, cv8);
vst1q_f32(c + 4 * ldc + 4, cv9);
vst1q_f32(c + 5 * ldc, cv10);
vst1q_f32(c + 5 * ldc + 4, cv11);
#else
const float *a_ptr, *b_ptr;
a_ptr = a;
b_ptr = b;
int kc1 = k / 4;
int kc2 = k % 4;
int step = 4 * ldc;
asm volatile(
"pld [%[a_ptr]] \n\t"
"pld [%[b_ptr]] \n\t"
"pld [%[a_ptr], #64] \n\t"
"pld [%[b_ptr], #64] \n\t"
"vmov.f32 q4, #0.0 \n\t"
"vmov.f32 q5, #0.0 \n\t"
"vmov.f32 q6, #0.0 \n\t"
"vmov.f32 q7, #0.0 \n\t"
"vmov.f32 q8, #0.0 \n\t"
"vmov.f32 q9, #0.0 \n\t"
"vmov.f32 q10, #0.0 \n\t"
"vmov.f32 q11, #0.0 \n\t"
"vmov.f32 q12, #0.0 \n\t"
"vmov.f32 q13, #0.0 \n\t"
"vmov.f32 q14, #0.0 \n\t"
"vmov.f32 q15, #0.0 \n\t"
"subs %[kc1], %[kc1], #1 \n\t"
"blt end_kc1_%= \n\t"
"loop_kc1_%=: \n\t"
// "pld [%[a_ptr], #128] \n\t"
// "pld [%[b_ptr], #128] \n\t"
// "pld [%[a_ptr], #192] \n\t"
// "pld [%[b_ptr], #192] \n\t"
"vld1.32 {d0-d2}, [%[a_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[b_ptr]]! \n\t"
"vmla.f32 q4, q2, d0[0] \n\t"
"vmla.f32 q5, q3, d0[0] \n\t"
"vmla.f32 q6, q2, d0[1] \n\t"
"vmla.f32 q7, q3, d0[1] \n\t"
"vmla.f32 q8, q2, d1[0] \n\t"
"vmla.f32 q9, q3, d1[0] \n\t"
"vmla.f32 q10, q2, d1[1] \n\t"
"vmla.f32 q11, q3, d1[1] \n\t"
"vmla.f32 q12, q2, d2[0] \n\t"
"vmla.f32 q13, q3, d2[0] \n\t"
"vmla.f32 q14, q2, d2[1] \n\t"
"vmla.f32 q15, q3, d2[1] \n\t"
"vld1.32 {d0-d2}, [%[a_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[b_ptr]]! \n\t"
"vmla.f32 q4, q2, d0[0] \n\t"
"vmla.f32 q5, q3, d0[0] \n\t"
"vmla.f32 q6, q2, d0[1] \n\t"
"vmla.f32 q7, q3, d0[1] \n\t"
"vmla.f32 q8, q2, d1[0] \n\t"
"vmla.f32 q9, q3, d1[0] \n\t"
"vmla.f32 q10, q2, d1[1] \n\t"
"vmla.f32 q11, q3, d1[1] \n\t"
"vmla.f32 q12, q2, d2[0] \n\t"
"vmla.f32 q13, q3, d2[0] \n\t"
"vmla.f32 q14, q2, d2[1] \n\t"
"vmla.f32 q15, q3, d2[1] \n\t"
"vld1.32 {d0-d2}, [%[a_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[b_ptr]]! \n\t"
"vmla.f32 q4, q2, d0[0] \n\t"
"vmla.f32 q5, q3, d0[0] \n\t"
"vmla.f32 q6, q2, d0[1] \n\t"
"vmla.f32 q7, q3, d0[1] \n\t"
"vmla.f32 q8, q2, d1[0] \n\t"
"vmla.f32 q9, q3, d1[0] \n\t"
"vmla.f32 q10, q2, d1[1] \n\t"
"vmla.f32 q11, q3, d1[1] \n\t"
"vmla.f32 q12, q2, d2[0] \n\t"
"vmla.f32 q13, q3, d2[0] \n\t"
"vmla.f32 q14, q2, d2[1] \n\t"
"vmla.f32 q15, q3, d2[1] \n\t"
"vld1.32 {d0-d2}, [%[a_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[b_ptr]]! \n\t"
"vmla.f32 q4, q2, d0[0] \n\t"
"vmla.f32 q5, q3, d0[0] \n\t"
"vmla.f32 q6, q2, d0[1] \n\t"
"vmla.f32 q7, q3, d0[1] \n\t"
"vmla.f32 q8, q2, d1[0] \n\t"
"vmla.f32 q9, q3, d1[0] \n\t"
"vmla.f32 q10, q2, d1[1] \n\t"
"vmla.f32 q11, q3, d1[1] \n\t"
"vmla.f32 q12, q2, d2[0] \n\t"
"vmla.f32 q13, q3, d2[0] \n\t"
"vmla.f32 q14, q2, d2[1] \n\t"
"vmla.f32 q15, q3, d2[1] \n\t"
"subs %[kc1], %[kc1], #1 \n\t"
"bge loop_kc1_%= \n\t"
"end_kc1_%=: \n\t"
"subs %[kc2], %[kc2], #1 \n\t"
"blt end_kc2_%= \n\t"
"loop_kc2_%=: \n\t"
"vld1.32 {d0-d2}, [%[a_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[b_ptr]]! \n\t"
"vmla.f32 q4, q2, d0[0] \n\t"
"vmla.f32 q5, q3, d0[0] \n\t"
"vmla.f32 q6, q2, d0[1] \n\t"
"vmla.f32 q7, q3, d0[1] \n\t"
"vmla.f32 q8, q2, d1[0] \n\t"
"vmla.f32 q9, q3, d1[0] \n\t"
"vmla.f32 q10, q2, d1[1] \n\t"
"vmla.f32 q11, q3, d1[1] \n\t"
"vmla.f32 q12, q2, d2[0] \n\t"
"vmla.f32 q13, q3, d2[0] \n\t"
"vmla.f32 q14, q2, d2[1] \n\t"
"vmla.f32 q15, q3, d2[1] \n\t"
"subs %[kc2], %[kc2], #1 \n\t"
"bge loop_kc2_%= \n\t"
"end_kc2_%=: \n\t"
"mov r5, %[c] \n\t"
"mov r6, %[step] \n\t"
"vst1.32 {q4, q5}, [r5], r6 \n\t"
"vst1.32 {q6, q7}, [r5], r6 \n\t"
"vst1.32 {q8, q9}, [r5], r6 \n\t"
"vst1.32 {q10, q11}, [r5], r6 \n\t"
"vst1.32 {q12, q13}, [r5], r6 \n\t"
"vst1.32 {q14, q15}, [r5] \n\t"
:
: [a_ptr] "r"(a_ptr), [b_ptr] "r"(b_ptr), [c] "r"(c), [kc1] "r"(kc1),
[kc2] "r"(kc2), [step] "r"(step)
: "memory", "r5", "r6", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15");
#endif // __aarch64__
#else
#endif // __ARM_NEON
}
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,7 +19,7 @@ limitations under the License. */ ...@@ -19,7 +19,7 @@ limitations under the License. */
#define B(i, j) B[(i)*ldb + (j)] #define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)] #define C(i, j) C[(i)*ldc + (j)]
#define MR 4 #define MR 6
#define NR 8 #define NR 8
#define s_min(i, j) ((i) < (j) ? (i) : (j)) #define s_min(i, j) ((i) < (j) ? (i) : (j))
...@@ -39,12 +39,14 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb, ...@@ -39,12 +39,14 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
*/ */
// 将 A 矩阵分块复制到连续内存(RowMajor) // 将 A 矩阵分块复制到连续内存(RowMajor)
void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda, void PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
float *buffer); float *buffer);
void PackMatrixA_6r(int m, int k, int m_tail, const float *A, int lda,
float *buffer);
// 将 B 矩阵分块复制到连续内存(RowMajor) // 将 B 矩阵分块复制到连续内存(RowMajor)
void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb, void PackMatrixB_8c(int k, int n, int n_tail, const float *B, int ldb,
float *buffer); float *buffer);
// 分块矩阵乘法 // 分块矩阵乘法
void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b, void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
...@@ -67,6 +69,7 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A, ...@@ -67,6 +69,7 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
// 计算一个更小的 C 矩阵分块 // 计算一个更小的 C 矩阵分块
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc); void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc); void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc);
// 分块矩阵乘法结果回写 // 分块矩阵乘法结果回写
// C = A * B // C = A * B
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册