提交 cbb7bdbb 编写于 作者: C chenhoujiang

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle-mobile into dev-latest

......@@ -24,6 +24,7 @@ const char *G_OP_TYPE_CONCAT = "concat";
const char *G_OP_TYPE_ELEMENTWISE_ADD = "elementwise_add";
const char *G_OP_TYPE_FILL_CONSTANT = "fill_constant";
const char *G_OP_TYPE_FUSION_CONV_ADD_RELU = "fusion_conv_add_relu";
const char *G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8 = "fusion_conv_add_relu_int8";
const char *G_OP_TYPE_FUSION_CONV_ADD_PRELU = "fusion_conv_add_prelu";
const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU = "fusion_conv_add_add_prelu";
const char *G_OP_TYPE_FUSION_CONV_ADD_BN_RELU = "fusion_conv_add_bn_relu";
......@@ -31,6 +32,7 @@ const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU = "fusion_conv_bn_add_relu";
const char *G_OP_TYPE_FUSION_DWCONV_BN_RELU = "fusion_dwconv_bn_relu";
const char *G_OP_TYPE_FUSION_CONV_BN_RELU = "fusion_conv_bn_relu";
const char *G_OP_TYPE_FC = "fusion_fc";
const char *G_OP_TYPE_FC_INT8 = "fusion_fc_int8";
const char *G_OP_TYPE_FUSION_CONV_ADD = "fusion_conv_add";
const char *G_OP_TYPE_LRN = "lrn";
const char *G_OP_TYPE_MUL = "mul";
......@@ -117,11 +119,13 @@ std::unordered_map<
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_POLYGON_BOX_TRANSFORM, {{"Input"}, {"Output"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
{G_OP_TYPE_FC_INT8, {{"X", "Y", "Z", "Scale"}, {"Out"}}},
{G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}},
{G_OP_TYPE_RESHAPE2, {{"X"}, {"Out", "XShape"}}},
{G_OP_TYPE_DEPTHWISE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_FILL_CONSTANT, {{}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8, {{"Input", "Scale"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_PRELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_IM2SEQUENCE, {{"X"}, {"Out"}}},
......
......@@ -108,9 +108,11 @@ extern const char *G_OP_TYPE_BOX_CODER;
extern const char *G_OP_TYPE_CONCAT;
extern const char *G_OP_TYPE_ELEMENTWISE_ADD;
extern const char *G_OP_TYPE_FUSION_CONV_ADD_RELU;
extern const char *G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8;
extern const char *G_OP_TYPE_FUSION_CONV_ADD_PRELU;
extern const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU;
extern const char *G_OP_TYPE_FC;
extern const char *G_OP_TYPE_FC_INT8;
extern const char *G_OP_TYPE_FUSION_CONV_ADD;
extern const char *G_OP_TYPE_FUSION_CONV_ADD_BN_RELU;
extern const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU;
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "fpga/V1/api.h"
#include "fpga/V1/bias_scale.h"
#include "fpga/V1/deconv_filter.h"
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
......@@ -124,6 +125,32 @@ void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
max_value);
filter_tensor->reset_data_ptr(new_data);
}
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
int group_num, int stride) {
filter_tensor->scale[0] = float(max_value / 127.0); // NOLINT
filter_tensor->scale[1] = float(127.0 / max_value); // NOLINT
auto dims = filter_tensor->dims();
auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
auto data_ptr = filter_tensor->data<float>();
size_t memory_size = num * channel * height * width * sizeof(float);
auto new_data = (float *)fpga_malloc(memory_size); // NOLINT
memcpy(new_data, data_ptr, memory_size);
int hw = height * width;
deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);
num = dims[1];
channel = dims[0];
deconv_filter::deconv_format_filter(
&new_data, (int)num, (int)channel, // NOLINT
(int)height, // NOLINT
(int)width, group_num, max_value, stride); // NOLINT
framework::DDim dims_new =
framework::make_ddim({num, channel, height, width});
filter_tensor->Resize(dims_new);
filter_tensor->reset_data_ptr(new_data);
}
void format_bias_scale_array(float **bias_scale_array,
int element_num_per_division, int num) {
......@@ -240,6 +267,100 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
filter->reset_data_ptr(nullptr);
fpga_free(bs_ptr);
}
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
framework::Tensor *out, framework::Tensor *filter,
bool relu_enabled, int group_num, int stride_h,
int stride_w, int padding_h, int padding_w,
float *bs_ptr) {
auto input_ptr = input->data<float>();
auto filter_ptr = filter->data<float>();
auto out_ptr = out->data<float>();
arg->group_num = (uint32_t)group_num;
arg->sub_conv_num = stride_h;
arg->filter_num = (uint32_t)filter->dims()[0];
int sub_conv_num = arg->sub_conv_num;
int sub_stride = 1;
int sub_pad = deconv_filter::deconv_calc_sub_pad(filter->dims()[3], padding_w,
stride_w);
int sub_filter_width =
deconv_filter::deconv_get_sub_filter_axis(filter->dims()[3], stride_w);
int sub_output_width = deconv_filter::deconv_get_sub_out_axis(
input->dims()[3], sub_pad, sub_filter_width);
int sub_output_height = deconv_filter::deconv_get_sub_out_axis(
input->dims()[2], sub_pad, sub_filter_width);
arg->sub_output_width = sub_output_width;
arg->sub_output_height = sub_output_height;
arg->omit_size =
deconv_filter::deconv_get_omit(stride_w, filter->dims()[3], padding_w);
arg->conv_args = (ConvArgs *)fpga_malloc(sub_conv_num * sizeof(ConvArgs));
int sub_channels = (int32_t)input->dims()[1];
int omit_size = arg->omit_size;
int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
int sub_filter_num = sub_conv_num * (arg->filter_num);
int conv_output_size =
(align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
sub_output_height;
int ouput_size = conv_output_size * sub_conv_num;
int align_sub_filter_num = align_to_x(sub_filter_num, FILTER_NUM_ALIGNMENT);
int align_sub_filter_count =
align_to_x(sub_filter_width * sub_filter_width * sub_channels,
FILTER_ELEMENT_ALIGNMENT);
int align_conv_sub_filter_count =
align_sub_filter_count * align_sub_filter_num;
for (int i = 0; i < sub_conv_num; ++i) {
arg->conv_args[i].filter_num = (arg->sub_conv_num) * (arg->filter_num);
arg->conv_args[i].group_num = group_num;
arg->conv_args[i].filter_scale_address = filter->scale;
arg->conv_args[i].relu_enabled = relu_enabled;
arg->conv_args[i].kernel.width = sub_filter_width;
arg->conv_args[i].kernel.height = sub_filter_width;
arg->conv_args[i].kernel.stride_w = 1;
arg->conv_args[i].kernel.stride_h = 1;
// DeconvParam.conv_args[i].image.address = (void*)ptr_image;
arg->conv_args[i].image.scale_address = input->scale;
arg->conv_args[i].image.channels = sub_channels;
arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
arg->conv_args[i].image.pad_width = sub_pad;
arg->conv_args[i].image.pad_height = sub_pad;
arg->conv_args[i].image.address = input_ptr;
arg->conv_args[i].sb_address = (void *)bs_ptr;
char *filter_sub_space =
(char *)fpga_malloc(align_conv_sub_filter_count * sizeof(char));
fpga_copy(filter_sub_space,
(char *)filter_ptr + i * align_conv_sub_filter_count,
align_conv_sub_filter_count);
arg->conv_args[i].filter_address = (void *)(filter_sub_space);
fpga_flush(filter_sub_space, align_conv_sub_filter_count);
if (sub_conv_num == 1) {
arg->conv_args[i].output.address = out_ptr;
arg->conv_args[i].output.scale_address = out->scale;
} else {
half *ptr_output = (half *)fpga_malloc(conv_output_size * sizeof(half));
arg->conv_args[i].output.address = (void *)((half *)ptr_output);
float *ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
arg->conv_args[i].output.scale_address = ptr_output_scale;
}
}
arg->output.address = out_ptr;
arg->output.scale_address = out->scale;
// fpga_free(filter_ptr);
}
} // namespace fpga
} // namespace paddle_mobile
......@@ -43,6 +43,25 @@ void fill_split_arg(struct SplitConvArgs* arg, framework::Tensor* input,
framework::Tensor* out, framework::Tensor* filter,
bool relu_enabled, int group_num, int stride_h,
int stride_w, int padding_h, int padding_w, float* bs_ptr);
void fill_deconv_arg(struct DeconvArgs* arg, framework::Tensor* input,
framework::Tensor* out, framework::Tensor* filter,
bool relu_enabled, int group_num, int stride_h,
int stride_w, int padding_h, int padding_w, float* bs_ptr);
void format_deconv_filter(framework::Tensor* filter_tensor, float max_value,
int group_num, int stride);
template <typename Dtype>
void savefile(std::string filename, void* buffer, int dataSize, Dtype tmp) {
float data;
std::ofstream out(filename.c_str());
for (int i = 0; i < dataSize; ++i) {
data = (((Dtype*)buffer)[i]);
out << data << std::endl;
}
out.close();
return;
}
} // namespace fpga
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "fpga/V1/deconv_bias_scale.h"
// #include "deconv_bias_scale.h"
#include "fpga/V1/bias_scale.h"
// #include "bias_scale.h"
#include <memory.h>
#include "fpga/V1/api.h"
// #include "fpga_api.h"
namespace paddle_mobile {
namespace fpga {
namespace deconv_bias_scale {
void deconv_bias_scale_expand(float** bias_scale_array, int num,
int sub_conv_n) {
int sub_num = num * sub_conv_n;
float* ptr_tmp = *bias_scale_array;
float* ptr_bias_scale_expand =
(float*)fpga_malloc(sizeof(float) * sub_num * 2);
int scale_base_offset = sub_num;
for (int i = 0; i < sub_conv_n; ++i) {
int offset = num * i;
// copy bias
fpga_copy(ptr_bias_scale_expand + offset, ptr_tmp, num * sizeof(float));
// copy scale
fpga_copy(ptr_bias_scale_expand + scale_base_offset + offset, ptr_tmp + num,
num * sizeof(float));
}
*bias_scale_array = ptr_bias_scale_expand;
fpga_free(ptr_tmp);
}
} // namespace deconv_bias_scale
} // namespace fpga
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#define BS_NUM_ALIGNMENT 8
namespace paddle_mobile {
namespace fpga {
namespace deconv_bias_scale {
void deconv_bias_scale_expand(float** bias_scale_array, int num,
int sub_conv_n);
} // namespace deconv_bias_scale
} // namespace fpga
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "fpga/V1/deconv_filter.h"
#include <memory.h>
#include <algorithm>
// #include "deconv_filter.h"
#include "fpga/V1/filter.h"
// #include "filter.h"
#include "fpga/V1/api.h"
// #include "fpga_api.h"
// just for test
//#include <string>
//#include "deconv.h"
//#include "deconv_api.h"
// using namespace std;
// using namespace paddle_mobile::fpga;
// using namespace baidu::fpga::deconv::api;
// namespace api = baidu::fpga::deconv::api;
namespace paddle_mobile {
namespace fpga {
namespace deconv_filter {
/*
inverse kernel weights of each channel for every filter
*/
void deconv_inverse_filter(float** data_in, int num, int channel, int width,
int height) {
float* tmp = *data_in;
// float fix_range = 127;// float scale = fix_range / max;
int data_size = num * channel * width * height;
int hw_len = height * width;
float* tmp_data = (float*)fpga_malloc(data_size * sizeof(float));
for (int i = 0; i < num; ++i) {
for (int j = 0; j < channel; ++j) {
for (int k = 0; k < hw_len; ++k) {
tmp_data[i * channel * hw_len + j * hw_len + k] =
(*data_in)[i * channel * hw_len + j * hw_len + hw_len - k - 1];
}
}
}
*data_in = (float*)tmp_data; //
fpga_free(tmp);
}
/*
calculate sub padding number
*/
int deconv_calc_sub_pad(int filter_axis, int pad, int stride) {
if (stride == 0 || ((filter_axis - pad - 1) < 0)) {
// error
return 0;
}
return (filter_axis - pad - 1) / stride;
}
int deconv_get_sub_filter_axis(int filter_axis, int stride) {
return (filter_axis / stride);
}
int deconv_get_sub_out_axis(int image_axis, int sub_pad, int sub_filter_axis) {
return ((image_axis + 2 * sub_pad - sub_filter_axis) + 1);
}
/*
(filter_width-pad,filter_width-pad) is the first pixel of sub-pixel image
position. so the omit rows or columns is (stride - )
*/
int deconv_get_omit(int stride, int filter_width, int pad) {
if (((filter_width - pad) <= 0)) { // ((filter_width-pad) > stride) ||
// error
return 0;
}
int idx = 1;
bool flag = false;
for (idx = 1; idx <= stride; ++idx) {
int j = idx;
for (; j <= filter_width;) {
if (j == filter_width - pad) {
flag = true;
break;
}
j = j + stride;
}
if (flag) {
break;
}
}
return (stride - idx);
}
int deconv_get_sub_filter_num(int filter_num, int stride) {
return filter_num * stride;
}
void deconv_get_sub_filter(char** data_in, int height, int width,
int sub_conv_n, int kernel_num, int channel) {
char* ptr_tmp = *data_in;
int sub_num = kernel_num * sub_conv_n;
int sub_h = height / sub_conv_n;
int sub_w = width / sub_conv_n;
int sub_filter_size =
kernel_num * sub_h * sub_w * channel * sub_conv_n * sub_conv_n;
char* ptr_sub_filter = (char*)fpga_malloc(sub_filter_size * sizeof(char));
for (int idx = 0; idx < sub_conv_n; ++idx) {
for (int nn = 0; nn < sub_num; ++nn) {
int ni = nn % kernel_num;
int woff = sub_conv_n - 1 - (nn / kernel_num); //
for (int hh = 0; hh < sub_h; ++hh) {
int hi = hh * sub_conv_n + idx % sub_conv_n;
for (int ww = 0; ww < sub_w; ++ww) {
int wi = ww * sub_conv_n + woff; // 1 0
int sidx = ((nn * sub_h + hh) * sub_w + ww) * channel; //
int kidx = ((ni * height + hi) * width + wi) * channel; //
fpga_copy(
ptr_sub_filter + idx * sub_h * sub_w * channel * sub_num + sidx,
(*data_in) + kidx, channel * sizeof(char));
// for (int cc =0; cc < channel; ++cc) {
// ptr_sub_filter[idx*sub_h*sub_w*channel*sub_num + sidx + cc] =
// (*data_in)[kidx + cc];
// }
}
}
}
}
*data_in = ptr_sub_filter;
fpga_free(ptr_tmp);
}
void deconv_NC_convert(float** filter_in, int kernel_num, int channels,
int hw) {
float* tmp = *filter_in;
float* ptr_filter = (float*)(paddle_mobile::fpga::fpga_malloc(
hw * kernel_num * channels * sizeof(float)));
for (int c = 0; c < channels; ++c) {
for (int n = 0; n < kernel_num; ++n) {
paddle_mobile::fpga::fpga_copy(ptr_filter + n * hw + kernel_num * hw * c,
tmp + n * channels * hw + c * hw,
hw * sizeof(float));
}
}
*filter_in = ptr_filter;
paddle_mobile::fpga::fpga_free(tmp);
}
void deconv_format_filter(float** data_in, int num, int channel, int height,
int width, int group_num, float max, int stride) {
int data_size = channel * height * width * num;
/*{
float result2 = (float)0;
string filename = "origin_filter_data";
api::savefile<float>(filename, (void *)*data_in, data_size, result2);
}*/
deconv_inverse_filter(data_in, num, channel, width, height);
/* {
float result2 = (float)0;
string filename = "inverse_filter_data";
api::savefile<float>(filename, (void *)*data_in, data_size, result2);
}*/
filter::quantize(data_in, data_size, max);
/* {
char result2 = (char)0;
string filename = "quantize_filter_data";
api::savefile<char>(filename, (void *)*data_in, data_size, result2);
}*/
char** quantize_data = (char**)data_in; // NOLINT
filter::convert_to_hwc(quantize_data, num, channel, height, width);
/*{
char result2 = (char)0;
string filename = "convert_to_hwc_filter_data";
api::savefile<char>(filename, (void *)*quantize_data, data_size,
result2);
}*/
deconv_get_sub_filter(quantize_data, height, width, stride, num, channel);
/*{
char result2 = (char)0;
string filename = "sub_filter_filter_data";
api::savefile<char>(filename, (void *)*quantize_data, data_size, result2);
}*/
int sub_conv_n = stride;
int sub_h = height / sub_conv_n;
int sub_w = width / sub_conv_n;
int sub_chw = sub_h * sub_w * channel;
int sub_num = sub_conv_n * num;
int division_capacity = filter::calc_division_capacity(sub_chw);
int num_per_div_before_alignment =
filter::calc_num_per_div(sub_num, group_num, division_capacity);
int num_per_div_after_alignment =
align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
int div_num = (sub_num + num_per_div_before_alignment - 1) /
num_per_div_before_alignment;
int residual = (sub_num) % num_per_div_before_alignment;
int num_after_alignment = num_per_div_after_alignment *
((residual == 0) ? div_num : (div_num - 1)) +
align_to_x(residual, FILTER_NUM_ALIGNMENT);
char** ptr_ptr_data = (char**)fpga_malloc(sub_conv_n * sizeof(char*));
int origin_offset = sub_chw * sub_num;
for (int i = 0; i < sub_conv_n; ++i) {
(ptr_ptr_data)[i] = (char*)fpga_malloc(origin_offset * sizeof(char));
fpga_copy((ptr_ptr_data)[i], (*quantize_data) + origin_offset * i,
origin_offset * sizeof(char));
/* char result2 = (char)0;
string filename = "ptr_ptr_data" + to_string(i);
api::savefile<char>(filename, (void *)(ptr_ptr_data[i]), origin_offset,
result2);
*/
}
// char result2 = (char)0;
// string filename = "interleave";
// api::savefile<char>(filename, (void *)*ptr_ptr_data, origin_offset,
// result2);
fpga_free(*quantize_data);
int align_offset =
align_to_x(sub_chw, FILTER_ELEMENT_ALIGNMENT) * num_after_alignment;
char* ptr_space = (char*)fpga_malloc(sub_conv_n * align_offset *
sizeof(char)); // continuous space
for (int i = 0; i < sub_conv_n; ++i) {
int offset = i * origin_offset;
char* ptr_tmp = (ptr_ptr_data)[i];
filter::align_element(&ptr_tmp, sub_num, sub_chw);
filter::align_num(&ptr_tmp, num_per_div_before_alignment, sub_num, sub_chw);
filter::reorder(&ptr_tmp, num_after_alignment, sub_chw);
filter::interleave(&ptr_tmp, num_after_alignment, sub_chw);
/* char result2 = (char)0;
string filename = "interleave" + to_string(i);
api::savefile<char>(filename, (void *)ptr_tmp, align_offset, result2);
*/
fpga_copy(ptr_space + i * align_offset, ptr_tmp, align_offset);
fpga_free(ptr_tmp);
}
*data_in = (float*)ptr_space;
/* {
char result2 = (char)0;
string filename = "ptr_space";
api::savefile<char>(filename, (void *)ptr_space, sub_conv_n *
align_offset, result2);
}*/
fpga_flush(ptr_space, sub_conv_n * align_offset * sizeof(char));
}
} // namespace deconv_filter
} // namespace fpga
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle_mobile {
namespace fpga {
namespace deconv_filter {
void deconv_inverse_filter(float** data_in, int num, int channel, int width,
int height);
int deconv_calc_sub_pad(int filter_axis, int pad, int stride);
int deconv_get_sub_filter_num(int filter_num, int stride);
int deconv_get_sub_filter_axis(int filter_axis, int stride);
int deconv_get_sub_out_axis(int image_axis, int sub_pad, int sub_filter_axis);
int deconv_get_omit(int stride, int filter_width, int pad);
void deconv_get_sub_filter(char** data_in, int height, int width,
int sub_conv_n, int kernel_num, int channel);
void deconv_format_filter(float** data_in, int num, int channel, int height,
int width, int group_num, float max, int stride);
void deconv_NC_convert(float** filter_in, int kernel_num, int channels, int hw);
} // namespace deconv_filter
} // namespace fpga
} // namespace paddle_mobile
......@@ -146,12 +146,16 @@ void align_num(char **data_in, int num_per_div_before_alignment, int num,
memset(data_tmp, 0, num_element * sizeof(char));
for (i = 0; i < div_num; i++) {
for (i = 0; i < div_num - 1; i++) {
memcpy(data_tmp + num_per_div_after_alignment * align_chw * i,
*data_in + num_per_div_before_alignment * align_chw * i,
num_per_div_before_alignment * align_chw);
}
memcpy(data_tmp + num_per_div_after_alignment * align_chw * i,
*data_in + num_per_div_before_alignment * align_chw * i,
(num - (div_num - 1) * num_per_div_before_alignment) * align_chw);
*data_in = data_tmp;
fpga_free(tmp);
}
......
......@@ -29,11 +29,11 @@ void convert_to_hwc(char** data_in, int num, int channel, int height,
int width);
float find_max(float* data_in, int data_size);
void quantize(float** data_in, int data_size, float max);
void align_element(float** data_in, int num, int chw);
void align_element(char** data_in, int num, int chw);
void align_num(char** data_in, int num_per_div_before_alignment, int num,
int chw);
void reorder(float** data_in, int num_after_alignment, int chw);
void interleave(float** data_in, int num_after_alignment, int chw);
void reorder(char** data_in, int num_after_alignment, int chw);
void interleave(char** data_in, int num_after_alignment, int chw);
void format_filter(float** data_in, int num, int channel, int height, int width,
int group_num, float max);
......
......@@ -146,11 +146,11 @@ int format_conv_data(framework::Tensor *filter_tensor,
}
int format_fc_data(framework::Tensor *filter_tensor,
framework::Tensor *ofm_tensor, float *bs_ptr) {
framework::Tensor *ofm_tensor, float **bs_ptr) {
float max_value = fpga::filter_find_max(filter_tensor);
fpga::format_fc_filter(filter_tensor, max_value);
int aligned_num = get_aligned_filter_num(filter_tensor);
fpga::format_bias_scale_array(&bs_ptr,
fpga::format_bias_scale_array(bs_ptr,
(int)filter_tensor->dims()[0], // NOLINT
aligned_num);
int aligned_channel = fpga::get_conv_output_channel(filter_tensor);
......@@ -214,7 +214,7 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg->conv_arg[i].output.scale_address = out->scale;
int num_after_alignment = filter::calc_aligned_num(
(int)input->dims()[1], arg->filter_num); // NOLINT
arg->filter_num, (int)input->dims()[1]); // NOLINT
arg->conv_arg[i].free_space =
fpga_malloc(num_after_alignment * 2 * sizeof(half));
}
......
......@@ -41,7 +41,7 @@ void format_concat_output(framework::Tensor* out, int height, int width,
int format_conv_data(framework::Tensor* filter_tensor,
framework::Tensor* ofm_tensor, float** bs_ptr, int group);
int format_fc_data(framework::Tensor* filter_tensor,
framework::Tensor* ofm_tensor, float* bs_ptr);
framework::Tensor* ofm_tensor, float** bs_ptr);
void fill_split_arg(struct SplitConvArgs* arg, framework::Tensor* input,
framework::Tensor* out, framework::Tensor* filter,
bool relu_enabled, int group_num, int stride_h,
......
......@@ -92,7 +92,8 @@ void fpga_free(void *ptr) {
}
void fpga_copy(void *dest, const void *src, size_t num) {
#ifdef PADDLE_MOBILE_ZU5
driver::fpga_copy_driver(dest, src, num);
// driver::fpga_copy_driver(dest, src, num);
memcpy(dest, src, num);
#else
memcpy(dest, src, num);
#endif
......
......@@ -26,6 +26,7 @@ int ComputeFpgaEWAdd(const struct EWAddArgs& args);
int ComputeFpgaConv(const struct SplitConvArgs& args);
int ComputeFPGAConcat(const struct ConcatArgs& args);
int ComputeFPGASplit(const struct SplitArgs& args);
int ComputeFpgaDeconv(const struct DeconvArgs& args);
} // namespace fpga
} // namespace paddle_mobile
......@@ -56,6 +56,7 @@ class CLImage {
tensor_dims_ = dim;
}
bool isInit() { return initialized_; }
/*
* need call SetTensorData first
*
......
......@@ -98,6 +98,24 @@ class OpRegistry {
}
};
#define REGISTER_OPERATOR_INT8(op_type, op_class, device_name, device_type) \
template class op_class<device_type, int8_t>; \
template <typename Dtype, typename T> \
class _OpClass_##op_type##_##device_name : public op_class<Dtype, T> { \
public: \
DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_##device_name, op_class); \
}; \
static paddle_mobile::framework::OperatorRegistrar< \
device_type, _OpClass_##op_type##_##device_name<device_type, int8_t>> \
__op_registrar_##op_type##_##device_name(#op_type); \
int TouchOpRegistrar_##op_type##_##device_name() { \
__op_registrar_##op_type##_##device_name.Touch(); \
return 0; \
}
#define REGISTER_OPERATOR_CPU_INT8(op_type, op_class) \
REGISTER_OPERATOR_INT8(op_type, op_class, cpu, paddle_mobile::CPU);
#define REGISTER_OPERATOR(op_type, op_class, device_name, device_type) \
template class op_class<device_type, float>; \
template <typename Dtype, typename T> \
......
......@@ -153,7 +153,8 @@ double PaddleMobile<CPU, Precision::FP32>::GetPredictTime() {
paddle_mobile::operators::math::Gemm gemm;
auto time1 = paddle_mobile::time();
gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
static_cast<float>(0), c, ldc, false, nullptr);
static_cast<float>(0), c, ldc, false,
static_cast<float *>(nullptr));
auto time2 = paddle_mobile::time();
double cost = paddle_mobile::time_diff(time1, time2);
paddle_mobile::memory::Free(a);
......
......@@ -30,6 +30,9 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(dropout, ops::DropoutOp);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL(dropout, ops::DropoutOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(dropout, ops::DropoutOp);
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#include "operators/fusion_conv_add_relu_int8_op.h"
#include <vector>
#include "operators/math/conv_func.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void FusionConvAddReluInt8Op<Dtype, T>::InferShape() const {
auto in_dims = this->param_.Input()->dims();
auto filter_dims = this->param_.Filter()->dims();
const std::vector<int> &strides = this->param_.Strides();
std::vector<int> paddings = this->param_.Paddings();
int groups = this->param_.Groups();
std::vector<int> dilations = this->param_.Dilations();
PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() &&
dilations.size() == paddings.size() &&
paddings.size() == strides.size()),
"ConvParam is not suitable");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(
math::ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i],
paddings[i], strides[i]));
}
framework::DDim ddim = framework::make_ddim(output_shape);
this->param_.Output()->Resize(ddim);
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU_INT8(fusion_conv_add_relu_int8,
ops::FusionConvAddReluInt8Op);
#endif
#endif // FUSION_CONVADDRELU_INT8_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class FusionConvAddReluInt8Op
: public framework::OperatorWithKernel<DeviceType,
FusionConvAddReluParam<DeviceType>,
ConvAddReluKernel<DeviceType, T>> {
public:
FusionConvAddReluInt8Op(const std::string &type,
const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType,
FusionConvAddReluParam<DeviceType>,
ConvAddReluKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
void InferShape() const override;
};
} // namespace operators
} // namespace paddle_mobile
#endif // FUSION_CONVADDRELU_INT8_OP
......@@ -55,6 +55,9 @@ REGISTER_FUSION_MATCHER(fusion_conv_bn_add_relu,
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_bn_add_relu, ops::FusionConvBNAddReluOp);
#endif
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_INT8_OP
#include "operators/fusion_fc_int8_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void FusionFcInt8Op<Dtype, T>::InferShape() const {
auto x_dims = this->param_.InputX()->dims();
auto y_dims = this->param_.InputY()->dims();
int x_num_col_dims = this->param_.XNumColDims();
int y_num_col_dims = this->param_.YNumColDims();
assert(x_dims.size() > x_num_col_dims);
assert(y_dims.size() > y_num_col_dims);
/// (1,2,3,4) , x_num_col_dims = 2 -> (2,12)
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
assert(x_mat_dims[1] == y_mat_dims[0]);
std::vector<int64_t> output_dims;
output_dims.reserve(
static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));
for (int i = 0; i < x_num_col_dims; ++i) {
output_dims.push_back(x_dims[i]);
}
for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
output_dims.push_back(y_dims[i]);
}
framework::DDim ddim = framework::make_ddim(output_dims);
this->param_.Out()->Resize(ddim);
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU_INT8(fusion_fc_int8, ops::FusionFcInt8Op);
#endif
#endif // FUSION_FC_INT8_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_INT8_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/fusion_fc_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class FusionFcInt8Op
: public framework::OperatorWithKernel<DeviceType,
FusionFcParam<DeviceType>,
FusionFcKernel<DeviceType, T>> {
public:
FusionFcInt8Op(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType, FusionFcParam<DeviceType>,
FusionFcKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
void InferShape() const override;
};
} // namespace operators
} // namespace paddle_mobile
#endif // FUSION_FC_INT8_OP
......@@ -28,10 +28,24 @@ bool ConvAddReluKernel<CPU, float>::Init(FusionConvAddReluParam<CPU> *param) {
template <>
void ConvAddReluKernel<CPU, float>::Compute(
const FusionConvAddReluParam<CPU> &param) {
ConvAddReluCompute<float>(param);
ConvAddReluCompute<float, float>(param);
}
template class ConvAddReluKernel<CPU, float>;
#ifdef FUSION_CONVADDRELU_INT8_OP
template <>
bool ConvAddReluKernel<CPU, int8_t>::Init(FusionConvAddReluParam<CPU> *param) {
return true;
}
template <>
void ConvAddReluKernel<CPU, int8_t>::Compute(
const FusionConvAddReluParam<CPU> &param) {
ConvAddReluCompute<int8_t, int32_t>(param);
}
template class ConvAddReluKernel<CPU, int8_t>;
#endif
} // namespace operators
} // namespace paddle_mobile
......
......@@ -27,10 +27,27 @@ bool FusionFcKernel<CPU, float>::Init(FusionFcParam<CPU> *param) {
template <>
void FusionFcKernel<CPU, float>::Compute(const FusionFcParam<CPU> &param) {
FusionFcCompute<float>(param);
FusionFcCompute<float, float>(param);
param.Out()->set_lod(param.InputX()->lod());
}
template class FusionFcKernel<CPU, float>;
#ifdef FUSION_FC_INT8_OP
template <>
bool FusionFcKernel<CPU, int8_t>::Init(FusionFcParam<CPU> *param) {
return true;
}
template <>
void FusionFcKernel<CPU, int8_t>::Compute(const FusionFcParam<CPU> &param) {
FusionFcCompute<int8_t, int32_t>(param);
param.Out()->set_lod(param.InputX()->lod());
}
template class FusionFcKernel<CPU, int8_t>;
#endif
} // namespace operators
} // namespace paddle_mobile
......
......@@ -20,10 +20,12 @@ limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#ifndef __aarch64__
inline float32_t vmaxvq_f32(float32x4_t r) {
float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
......
......@@ -25,21 +25,30 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
template <typename P>
template <typename P, typename S>
void ConvAddReluCompute(const FusionConvAddReluParam<CPU> &param) {
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor bias = *param.Bias();
int axis = param.Axis();
int32_t axis = param.Axis();
S *bias_data = bias.data<S>();
Tensor *output = param.Output();
float *biase_data = bias.data<float>();
output->mutable_data<P>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
float alpha = 1.0f;
float beta = 1.0f;
const int batch_size = static_cast<int>(input->dims()[0]);
#ifdef FUSION_CONVADDRELU_INT8_OP
alpha = param.InputScale()->data<float>()[0];
beta = 0.0f;
#endif
int32_t groups = param.Groups();
std::vector<int32_t> strides = param.Strides();
std::vector<int32_t> paddings = param.Paddings();
std::vector<int32_t> dilations = param.Dilations();
const int32_t batch_size = static_cast<int32_t>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
......@@ -61,13 +70,13 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> &param) {
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col.mutable_data<P>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
input->dims(), 1, static_cast<int32_t>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
......@@ -77,17 +86,17 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> &param) {
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
int32_t in_step = static_cast<int32_t>(input->dims()[1]) / groups;
int32_t out_step = static_cast<int32_t>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
math::Vol2ColFunctor<CPU, P> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, P> im2col;
for (int i = 0; i < batch_size; i++) {
for (int32_t i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
for (int32_t g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) {
......@@ -97,8 +106,8 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> &param) {
} else if (data_dim == 2U) {
// im2col
im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
std::vector<int32_t>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
......@@ -108,9 +117,9 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> &param) {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(1), true, biase_data);
math::matmul(filter_slice, false, col_matrix, false, alpha, &out_slice,
beta, true, bias_data);
}
}
}
......
......@@ -106,10 +106,9 @@ inline void GemmConv(const ConvParam<CPU> &param) {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<Itype>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
math::matmul(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice, static_cast<float>(0),
false, static_cast<Otype *>(nullptr));
}
}
}
......
......@@ -15,23 +15,29 @@ limitations under the License. */
#ifdef FUSION_FC_OP
#pragma once
#include <type_traits>
#include "operators/math/math_function.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename P>
template <typename P, typename S>
void FusionFcCompute(const FusionFcParam<CPU> &param) {
const Tensor *input_x = param.InputX();
const Tensor *input_y = param.InputY();
const Tensor *input_z = param.InputZ();
auto *input_z_data = input_z->data<float>();
Tensor *input_z = param.InputZ();
S *input_z_data = input_z->data<S>();
int axis = param.Axis();
Tensor *out = param.Out();
// int m = out->dims()[0];
// int n = out->dims()[1];
auto *out_data = out->mutable_data<float>();
auto *out_data = out->mutable_data<P>();
float alpha = 1.0f;
float beta = 1.0f;
const Tensor x_matrix =
input_x->dims().size() > 2
? framework::ReshapeToMatrix(*input_x, param.XNumColDims())
......@@ -51,21 +57,28 @@ void FusionFcCompute(const FusionFcParam<CPU> &param) {
axis = (axis == -1 ? out_dim.size() - input_z->dims().size() : axis);
PADDLE_MOBILE_ENFORCE(axis == 1, " to fit broadcast, axis = 1. ");
int64_t classes = input_z->numel();
for (int i = 0; i < out_dim[0]; i++) {
memory::Copy(out_data + i * classes, input_z_data, sizeof(float) * classes);
}
if (std::is_same<P, int8_t>::value) {
#ifdef FUSION_FC_INT8_OP
alpha = param.InputScale()->data<float>()[0];
beta = 0.0f;
math::matmul(x_matrix, false, y_matrix, false, alpha, out, beta, false,
input_z_data, true);
#endif
} else {
// bias_data的维度和out的第二个维度一致
int64_t classes = input_z->numel();
for (int i = 0; i < out_dim[0]; i++) {
memory::Copy(out_data + i * classes, input_z_data,
sizeof(float) * classes);
}
// for (int i = 0; i < out->numel(); i++) {
// DLOG << out_data[i];
// }
// bias_data的维度和out的维度一致
math::matmul<float>(x_matrix, false, y_matrix, false, static_cast<float>(1),
out, static_cast<float>(1), false);
math::matmul<float>(x_matrix, false, y_matrix, false, alpha, out, beta,
false);
}
PADDLE_MOBILE_ENFORCE(out_dim.size() == 2, " out_dim.size must be 2.");
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
}
} // namespace operators
......
......@@ -73,8 +73,9 @@ void MulCompute(const MulParam<CPU> &param) {
}
if (param.InputX()->type() == typeid(int8_t)) {
out->mutable_data<int32_t>();
math::matmul<int8_t>(x_matrix, false, y_matrix, false,
static_cast<int8_t>(1), out, static_cast<int8_t>(0));
math::matmul<float, int32_t>(x_matrix, false, y_matrix, false,
static_cast<float>(1), out,
static_cast<float>(0));
} else {
out->mutable_data<float>();
......
......@@ -23,20 +23,22 @@ namespace paddle_mobile {
namespace operators {
using framework::Tensor;
inline void PoolBasic(std::string pooling_type, std::vector<int> ksize,
std::vector<int> strides, std::vector<int> paddings,
const Tensor *in_x, Tensor *out) {
template <typename T, typename S>
void PoolBasic(std::string pooling_type, std::vector<int> ksize,
std::vector<int> strides, std::vector<int> paddings,
const Tensor *in_x, Tensor *out) {
if (pooling_type == "max") {
math::PoolFunctor<CPU, math::MaxPool<float>, float> pool2d_forward;
math::MaxPool<float> pool_process;
math::PoolFunctor<CPU, math::MaxPool<T>, T> pool2d_forward;
math::MaxPool<T> pool_process;
pool2d_forward(*in_x, ksize, strides, paddings, pool_process, out);
} else if (pooling_type == "avg") {
math::PoolFunctor<CPU, math::AvgPool<float>, float> pool2d_forward;
math::AvgPool<float> pool_process;
math::PoolFunctor<CPU, math::AvgPool<T, S>, T> pool2d_forward;
math::AvgPool<T, S> pool_process;
pool2d_forward(*in_x, ksize, strides, paddings, pool_process, out);
}
}
template <typename P>
void PoolCompute(const PoolParam<CPU> &param) {
const Tensor *in_x = param.Input();
......@@ -52,50 +54,67 @@ void PoolCompute(const PoolParam<CPU> &param) {
LOG(paddle_mobile::LogLevel::kLOG_ERROR)
<< "Pool op only supports 2D and 3D input.";
}
if (param.isGlobalPooling()) {
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
}
}
if (ksize[0] == 3 && ksize[0] == ksize[1]) {
if (pooling_type == "max") {
if (strides[0] == strides[1] && strides[0] == 1 &&
paddings[0] == paddings[1] && paddings[1] == 1) {
math::Pool3x3Maxs1p1(in_x, out);
if (in_x->type() == typeid(int8_t)) {
if (pooling_type == "max" && ksize[0] == 3 && ksize[0] == ksize[1]) {
if (strides[0] == strides[1] && strides[0] == 1) {
math::Pool3x3Maxs1_int8(in_x, out, paddings[0], paddings[1]);
} else if (strides[0] == strides[1] && strides[0] == 2) {
math::Pool3x3Maxs2_int8(in_x, out, paddings[0], paddings[1]);
} else {
math::Pool3x3Max(strides, paddings, in_x, out);
}
} else if (pooling_type == "avg") {
if (strides[0] == strides[1] && strides[0] == 1 &&
paddings[0] == paddings[1] && paddings[1] == 1) {
math::Pool3x3Avgs1p1(in_x, out);
} else {
math::Pool3x3Avg(strides, paddings, in_x, out);
math::Pool3x3Max_int8(strides, paddings, in_x, out);
}
} else {
PoolBasic<int8_t, int32_t>(pooling_type, ksize, strides, paddings, in_x,
out);
}
} else {
if (ksize[0] == 3 && ksize[0] == ksize[1]) {
if (pooling_type == "max") {
if (strides[0] == strides[1] && strides[0] == 1 &&
paddings[0] == paddings[1] && paddings[1] == 1) {
math::Pool3x3Maxs1p1(in_x, out);
} else {
math::Pool3x3Max(strides, paddings, in_x, out);
}
} else if (pooling_type == "avg") {
if (strides[0] == strides[1] && strides[0] == 1 &&
paddings[0] == paddings[1] && paddings[1] == 1) {
math::Pool3x3Avgs1p1(in_x, out);
} else {
math::Pool3x3Avg(strides, paddings, in_x, out);
}
}
} else if (ksize[0] == 2 && ksize[0] == ksize[1] && strides[0] == 2 &&
strides[0] == strides[1] && paddings[0] == paddings[1] &&
paddings[1] == 0) {
} else if (ksize[0] == 2 && ksize[0] == ksize[1] && strides[0] == 2 &&
strides[0] == strides[1] && paddings[0] == paddings[1] &&
paddings[1] == 0) {
#if __ARM_NEON
#if __aarch64__
PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
PoolBasic<float, float>(pooling_type, ksize, strides, paddings, in_x,
out);
#else
/// todo: fix bug in Pool2x2
if (pooling_type == "max") {
math::Pool2x2Maxs2p0(strides, paddings, in_x, out);
} else if (pooling_type == "avg") {
math::Pool2x2Avgs2p0(strides, paddings, in_x, out);
}
/// todo: fix bug in Pool2x2
if (pooling_type == "max") {
math::Pool2x2Maxs2p0(strides, paddings, in_x, out);
} else if (pooling_type == "avg") {
math::Pool2x2Avgs2p0(strides, paddings, in_x, out);
}
#endif
#else
PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
PoolBasic<float, float>(pooling_type, ksize, strides, paddings, in_x,
out);
#endif // __ARM_NEON
} else {
PoolBasic(pooling_type, ksize, strides, paddings, in_x, out);
} else {
PoolBasic<float, float>(pooling_type, ksize, strides, paddings, in_x,
out);
}
}
}
......
......@@ -77,15 +77,25 @@ void BatchNormKernel<GPU_CL, float>::Compute(
auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage();
const int out_width = default_work_size[1];
clSetKernelArg(kernel, 1, sizeof(int), &out_width);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &input);
clSetKernelArg(kernel, 3, sizeof(cl_mem), &new_scale);
clSetKernelArg(kernel, 4, sizeof(cl_mem), &new_bias);
clSetKernelArg(kernel, 5, sizeof(cl_mem), &out);
// cl_event out_event = param.OutputY()->GetClEvent();
// cl_event wait_event = param.InputX()->GetClEvent();
DLOG << *param.InputX();
DLOG << *param.NewBias();
DLOG << *param.NewScale();
DLOG << default_work_size[0];
DLOG << default_work_size[1];
DLOG << default_work_size[2];
DLOG << out_width;
DLOG << *param.OutputY();
cl_int status;
clSetKernelArg(kernel, 0, sizeof(cl_int), &out_width);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 3, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
clSetKernelArg(kernel, 4, sizeof(cl_mem), &out);
CL_CHECK_ERRORS(status);
clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define BATCH_NORM
#define BIASE
#define RELU
#include "conv_kernel.inc.cl"
......@@ -924,6 +924,387 @@ __kernel void conv_5x5(__private const int global_size_dim0,
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void convBNAdd_3x3(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
half4 output = (half4)0.0f;
half4 input[9];
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
input[0] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[1] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[2] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[3] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[4] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[5] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[6] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
input[7] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
input[8] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
/*
for (int j = 0; j < 9; ++j) {
int2 pos_of_weight;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
}
*/
int j = 0;
int2 pos_of_weight;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 1;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 2;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 3;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 4;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 5;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 6;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 7;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 8;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = read_imageh(filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = read_imageh(filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = read_imageh(filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = read_imageh(filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef BIASE
output += read_imageh(bias, sampler, (int2)(out_c * global_size_dim1 + out_w, out_nh));
#endif
#ifdef RELU
output = activation(output);
#endif
write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}
__kernel void convBNAdd_1x1(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter,
#ifdef BIASE
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
const uint kernelHXW = 1;
int2 stride_xy = (int2)(stride, stride);
int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
half4 output = 0.0f;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
half4 input = read_imageh(input_image, sampler, pos_in);
half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
/*
output.x = dot(input, weight0);
output.y = dot(input, weight1);
output.z = dot(input, weight2);
output.w = dot(input, weight3);
*/
output = mad(input.x, weight0, output);
output = mad(input.y, weight1, output);
output = mad(input.z, weight2, output);
output = mad(input.w, weight3, output);
}
#ifdef BATCH_NORM
output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif
#ifdef BIASE
output += read_imageh(bias, sampler, (int2)(out_c * global_size_dim1 + out_w, out_nh));
#endif
#ifdef RELU
output = activation(output);
#endif
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
write_imageh(output_image, output_pos, output);
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
__kernel void dropout(__read_only image2d_t input_image,
__write_only image2d_t output_image,
__private const int out_W,
__private const float dropoutPro) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int2 output_pos;
output_pos.x = out_c * out_W + out_w;
output_pos.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST;
half4 input;
half4 output;
input = read_imageh(input_image, sampler,output_pos);
half4 dropout = (half4)(1 - dropoutPro);
output = dropout * input;
write_imageh(output_image, output_pos, output);
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVBNADDRELU_OP
#include "operators/kernel/conv_bn_add_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvBNAddReluKernel<GPU_CL, float>::Init(
FusionConvBNAddReluParam<GPU_CL> *param) {
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
const framework::CLImage *mean = param->InputMean();
const framework::CLImage *variance = param->InputVariance();
const framework::CLImage *scale = param->InputScale();
const framework::CLImage *bias = param->InputBias();
const float epsilon = param->Epsilon();
const int C = mean->numel();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
float *new_scale_ptr = new float[C];
float *new_bias_ptr = new float[C];
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
framework::CLImage *new_scale = new framework::CLImage();
// for (int j = 0; j < C; ++j) {
// DLOG << " new scale - " << j << new_scale_ptr[j];
// }
//
// for (int j = 0; j < C; ++j) {
// DLOG << " new bias - " << j << new_bias_ptr[j];
// }
new_scale->SetTensorData(new_scale_ptr, variance->dims());
new_scale->InitCLImage(this->cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
// DLOG << " climage - y bias: " << *(param->Bias());
//
// DLOG << " climage - new scale: " << *new_scale;
framework::CLImage *new_bias = new framework::CLImage();
new_bias->SetTensorData(new_bias_ptr, variance->dims());
new_bias->InitCLImage(this->cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
// DLOG << " climage - new bias: " << *new_bias;
//
// DLOG << " climage - filter: " << *(param->Filter());
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
delete[](new_scale_ptr);
delete[](new_bias_ptr);
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
static_cast<int>(param->Paddings()[1]);
param->SetOffset(offset);
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("convBNAdd_1x1", "conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu conv 1x1";
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
param->Filter()->InitDWImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("depth_convBNAdd_3x3",
"conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu depth_conv_3x3";
} else if (param->Filter()->dims()[2] == 3 &&
param->Filter()->dims()[3] == 3) {
param->Filter()->InitCLImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("convBNAdd_3x3", "conv_bn_add_relu_kernel.cl");
DLOG << " conv bn add relu conv_3x3";
} else {
PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
}
return true;
}
template <>
void ConvBNAddReluKernel<GPU_CL, float>::Compute(
const FusionConvBNAddReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto biase = param.Bias()->GetCLImage();
auto new_scale = param.NewScale()->GetCLImage();
auto new_bias = param.NewBias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << *param.Input();
// DLOG << " output dim " <<* param.Output();
// DLOG << " filter dim " << *param.Filter();
// DLOG<<*param.Bias();
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_scale);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &new_bias);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 15, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 16, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
template class ConvBNAddReluKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEPTHWISECONV_OP
#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/central-arm-func/depthwise_conv_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
DLOG << " depthwise conv kernel init begin ";
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
param->Filter()->InitCLImage(cl_helper_.CLContext(),
this->cl_helper_.CLCommandQueue());
int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
static_cast<int>(param->Paddings()[1]);
param->SetOffset(offset);
this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
DLOG << " depthwise conv kernel init end ";
return true;
}
template <>
void DepthwiseConvKernel<GPU_CL, float>::Compute(
const ConvParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
template class DepthwiseConvKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
///* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License. */
//
//#ifdef DEQUANT_OP
//
//#include "operators/kernel/dequantize_kernel.h"
//
// namespace paddle_mobile {
// namespace operators {
//
// template <>
// bool DequantizeKernel<GPU_CL, float>::Init(DequantizeParam<GPU_CL> *param) {
// DLOG << " depthwise conv kernel init begin ";
// PADDLE_MOBILE_ENFORCE(
// param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
// param->Paddings()[0] == param->Paddings()[1],
// "need equal");
// param->Filter()->InitCLImage(cl_helper_.CLContext(),
// this->cl_helper_.CLCommandQueue());
// int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
// static_cast<int>(param->Paddings()[1]);
// param->SetOffset(offset);
// this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
// DLOG << " depthwise conv kernel init end ";
// return true;
//}
//
// template <>
// void DequantizeKernel<GPU_CL, float>::Compute(
// const DequantizeParam<GPU_CL> &param) {
// auto kernel = this->cl_helper_.KernelAt(0);
// auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
// int c_block = default_work_size[0];
// int w = default_work_size[1];
// int nh = default_work_size[2];
// auto input = param.Input()->GetCLImage();
// auto filter = param.Filter()->GetCLImage();
// auto output = param.Output()->GetCLImage();
// int stride = param.Strides()[0];
// int offset = param.Offset();
// int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
// param.Input()->Converter())
// ->GetCBlock();
// int dilation = param.Dilations()[0];
//
// int input_width = param.Input()->dims()[3];
// int input_height = param.Input()->dims()[2];
// int output_width = param.Output()->dims()[3];
// int output_height = param.Output()->dims()[2];
//
// cl_int status;
//
// status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
// status = clSetKernelArg(kernel, 1, sizeof(int), &w);
// status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
// status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
// status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
// status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
// status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
// status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
// status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
// status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
// status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
// status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
// status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
// status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
//
// CL_CHECK_ERRORS(status);
//
// // cl_event out_event = param.Output()->GetClEvent();
// // cl_event wait_event = param.Input()->GetClEvent();
//
// status = clEnqueueNDRangeKernel(
// this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
// NULL, default_work_size.data(), NULL, 0, NULL, NULL);
//
// CL_CHECK_ERRORS(status);
//}
//
// template class DepthwiseConvKernel<GPU_CL, float>;
//
//} // namespace operators
//} // namespace paddle_mobile
//
//#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DROPOUT_OP
#include "operators/kernel/dropout_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DropoutKernel<GPU_CL, float>::Init(DropoutParam<GPU_CL> *param) {
this->cl_helper_.AddKernel("dropout", "dropout_kernel.cl");
return true;
}
template <>
void DropoutKernel<GPU_CL, float>::Compute(const DropoutParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*(param.Out()));
auto *input_image = param.InputX()->GetCLImage();
auto *output_image = param.Out()->GetCLImage();
const float dropoutProb = param.DropoutProb();
const auto &inputDim = param.InputX()->dims();
int input_dims[4] = {1, 1, 1, 1};
// 1 1000 1 1
for (int i = 0; i < inputDim.size(); i++) {
input_dims[4 - inputDim.size() + i] = inputDim[i];
}
int out_W = input_dims[1];
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_image);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_image);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &out_W);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(float), &dropoutProb);
CL_CHECK_ERRORS(status);
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -24,7 +24,11 @@ bool ElementwiseAddKernel<GPU_CL, float>::Init(
ElementwiseAddParam<GPU_CL> *param) {
DLOG << "-----init add-----";
CLImage *bias = (CLImage *)(param->InputY());
bias->InitCLImage(cl_helper_.CLContext(), this->cl_helper_.CLCommandQueue());
if (!bias->isInit()) {
bias->InitCLImage(cl_helper_.CLContext(),
this->cl_helper_.CLCommandQueue());
}
DLOG << " bias: " << *bias;
if (bias->dims().size() == 4) {
this->cl_helper_.AddKernel("elementwise_add", "elementwise_add_kernel.cl");
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef MUL_OP
#include "operators/kernel/mul_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool MulKernel<GPU_CL, float>::Init(MulParam<GPU_CL> *param) {
return true;
}
template <>
void MulKernel<GPU_CL, float>::Compute(const MulParam<GPU_CL> &param) {}
template class MulKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -23,12 +23,61 @@ namespace operators {
template <>
bool DeconvAddKernel<FPGA, float>::Init(FusionDeconvAddParam<FPGA> *param) {
bool relu_enabled = false;
auto input = const_cast<Tensor *>(param->Input());
const Tensor *bias = param->Bias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
"Output channel should be equal to bias number");
int channel = out->dims()[1];
int sub_conv_n = param->Strides()[0];
auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n *
sizeof(float)); // NOLINT
for (int i = 0; i < channel * sub_conv_n; i++) {
bs_ptr[i + sub_conv_n * channel] = 1;
bs_ptr[i] = bias_ptr[i % (channel)];
}
PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
"stride_width should be equal to stride_height ");
PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
"filter width should be equal to filter height ");
PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
"filter axis should be the multiple of stride axis ");
float max_value = fpga::filter_find_max(filter);
fpga::format_deconv_filter(filter, max_value, param->Groups(),
param->Strides()[0]);
// int element_num_per_div =
// fpga::get_filter_num_per_div(filter, param->Groups());
// deconv only support group=1 && no spilt
fpga::format_bias_scale_array(&bs_ptr, channel * sub_conv_n,
channel * sub_conv_n);
fpga::format_fp16_ofm(out);
fpga::DeconvArgs deconv_arg = {0};
fpga::fill_deconv_arg(&deconv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(deconv_arg);
return true;
}
template <>
void DeconvAddKernel<FPGA, float>::Compute(
const FusionDeconvAddParam<FPGA> &param) {}
const FusionDeconvAddParam<FPGA> &param) {
fpga::ComputeFpgaDeconv(param.FpgaArgs());
}
} // namespace operators
} // namespace paddle_mobile
......
......@@ -24,12 +24,60 @@ namespace operators {
template <>
bool DeconvAddReluKernel<FPGA, float>::Init(
FusionDeconvAddReluParam<FPGA> *param) {
bool relu_enabled = true;
auto input = const_cast<Tensor *>(param->Input());
const Tensor *bias = param->Bias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
"Output channel should be equal to bias number");
int channel = out->dims()[1];
int sub_conv_n = param->Strides()[0];
auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n *
sizeof(float)); // NOLINT
for (int i = 0; i < channel * sub_conv_n; i++) {
bs_ptr[i + sub_conv_n * channel] = 1;
bs_ptr[i] = bias_ptr[i % (channel)];
}
PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
"stride_width should be equal to stride_height ");
PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
"filter width should be equal to filter height ");
PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
"filter axis should be the multiple of stride axis ");
float max_value = fpga::filter_find_max(filter);
fpga::format_deconv_filter(filter, max_value, param->Groups(),
param->Strides()[0]);
// int element_num_per_div =
// fpga::get_filter_num_per_div(filter, param->Groups());
// deconv only support group=1 && no spilt
fpga::format_bias_scale_array(&bs_ptr, channel * sub_conv_n,
channel * sub_conv_n);
fpga::format_fp16_ofm(out);
fpga::DeconvArgs deconv_arg = {0};
fpga::fill_deconv_arg(&deconv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(deconv_arg);
return true;
}
template <>
void DeconvAddReluKernel<FPGA, float>::Compute(
const FusionDeconvAddReluParam<FPGA> &param) {}
const FusionDeconvAddReluParam<FPGA> &param) {
fpga::ComputeFpgaDeconv(param.FpgaArgs());
}
} // namespace operators
} // namespace paddle_mobile
......
......@@ -21,7 +21,7 @@ namespace operators {
template <>
bool ElementwiseAddReluKernel<FPGA, float>::Init(
ElementwiseAddReluParam<FPGA> *param) {
bool relu_enabled = false;
bool relu_enabled = true;
auto *input_x = const_cast<LoDTensor *>(param->InputX());
auto *input_y = const_cast<LoDTensor *>(param->InputY());
auto *out = param->Out();
......
......@@ -47,7 +47,7 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
out->Resize(framework::make_ddim({1, channel, 1, 1}));
filter->Resize(framework::make_ddim({num, filter_channel, height, width}));
fpga::format_fc_data(filter, out, bs_ptr);
fpga::format_fc_data(filter, out, &bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1,
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) && defined(__aarch64__)
#include "operators/math/depthwise_conv3x3.h"
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
namespace math {
// template<>
// void DepthwiseConv3x3<int8_t, int32_t>(
// const framework::Tensor *input, const framework::Tensor *filter,
// const std::vector<int> &strides, framework::Tensor *output) {
// PADDLE_MOBILE_THROW_EXCEPTION(
// "Depthwise conv with generic strides has not been implemented.");
// }
template <>
void DepthwiseConv3x3S1<int8_t, int32_t>(const framework::Tensor &input,
const framework::Tensor &filter,
const std::vector<int> &paddings,
framework::Tensor *output) {
PADDLE_MOBILE_THROW_EXCEPTION(
"Depthwise conv3x3 with stride 1 for arm v8 has not been implemented.");
}
template <>
void DepthwiseConv3x3S2<int8_t, int32_t>(const framework::Tensor &input,
const framework::Tensor &filter,
const std::vector<int> &paddings,
framework::Tensor *output) {
PADDLE_MOBILE_THROW_EXCEPTION(
"Depthwise conv3x3 with stride 2 for arm v8 has not been implemented.");
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -15,6 +15,10 @@ limitations under the License. */
#pragma once
#include <string>
#include "common/log.h"
#include "memory/t_malloc.h"
#ifdef _OPENMP
#include <omp.h>
#endif
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
......@@ -23,10 +27,12 @@ limitations under the License. */
#if __aarch64__
#define MR_INT8 4
#define NR_INT8 2
#define MR 6
#define NR 16
#else
#define MR_INT8 4
#define NR_INT8 2
#define MR 6
#define NR 8
#endif
......@@ -170,6 +176,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias, float *bias);
void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
const float *B, int ldb, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1);
......@@ -193,52 +200,72 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 8 bits int small block inner product
void AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc);
void AddDot4x2(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc);
void AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc);
// 8 bits int inner product
void InnerKernelWithBias(int32_t mc, int32_t nc, int8_t alpha,
const int8_t *a, const int8_t *b, int8_t beta,
int32_t *c, int32_t *C, int32_t ldc, bool relu,
int8_t *bias);
template <typename Otype>
void InnerKernel(int32_t mc, int32_t nc, float alpha, const int8_t *a,
const int8_t *b, float beta, int32_t *c, Otype *C,
int32_t ldc, bool relu);
template <typename Otype>
void InnerKernelWithBias(int32_t mc, int32_t nc, float alpha, const int8_t *a,
const int8_t *b, float beta, int32_t *c, Otype *C,
int32_t ldc, bool relu, int32_t *bias,
bool addOnRow = false);
// 8 bits int pack function
void PackMatrixA_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixA_4r_16(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixA_6r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixB_2c_16(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer);
void PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer);
void PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer);
void PackMatrixA_omp_4r_16(int32_t m, int32_t k, int32_t m_tail,
const int8_t *A, int32_t lda, int8_t *buffer);
void PackMatrixB_omp_2c_16(int32_t k, int32_t n, int32_t n_tail,
const int8_t *B, int32_t ldb, int8_t *buffer);
// 8 bits int matrix product
void Sgemm(int32_t m, int32_t n, int32_t k, int8_t alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, int8_t beta, int32_t *C,
int32_t ldc, bool relu, int8_t *bias);
void Sgemm_omp(int32_t m, int32_t n, int32_t k, int8_t alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, int8_t beta,
int32_t *C, int32_t ldc, bool relu, int8_t *bias);
template <typename Itype, typename Btype, typename Otype>
void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
int32_t ldc, bool relu, Btype *bias, bool addOnRow = false);
template <typename Otype>
void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, float beta,
Otype *C, int32_t ldc, bool relu, int32_t *bias,
bool addOnRow = false);
template <typename Itype, typename Btype, typename Otype>
void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
int32_t ldc, bool relu, Btype *bias, bool addOnRow = false);
template <typename Otype>
void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, float beta, Otype *C,
int32_t ldc, bool relu, int32_t *bias, bool addOnRow = false);
// 8 bits int write back
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc);
// C = A * B
void WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C, int32_t ldc);
// C = A * B + C
void WriteWithAdd(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc);
// C = A * B + bias
void WriteWithAddV1(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc, int8_t *bias);
// C = A * B + C, relu(C)
void WriteWithAddRelu(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc);
// C = A * B + bias, relu(C)
void WriteWithAddReluV1(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc, int8_t *bias);
// C = A * B + bias, scale * relu(C)
void WriteWithAddReluScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
int32_t ldc, int32_t *bias, float scale);
// C = A * B + bias, scale * C, bias is added on column
void WriteWithAddScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
int32_t ldc, int32_t *bias, float scale);
// C = A * B + bias, scale * C, bias is added on row
void WriteWithAddScaleT(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
int32_t ldc, int32_t *bias, float scale);
private:
int MC = 0;
......@@ -254,10 +281,218 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
// 8 bits int
int8_t *packedA_int8;
int8_t *packedB_int8;
int32_t *packedC_int8;
int32_t *packedC_int32;
int8_t *zero_int8;
};
// 8 bits int matrix product (m*k x k*n)
template <typename Otype>
void Gemm::Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, float beta,
Otype *C, int32_t ldc, bool relu, int32_t *bias,
bool addOnRow) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int32_t L1 = 32 * 1024;
int32_t L2 = 512 * 1024;
const int32_t k_complete = (k + 15) - ((k + 15) & 15);
KC = k_complete;
MC = L1 / (KC * sizeof(int8_t));
NC = L2 / (KC * sizeof(int8_t));
// make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
if (MC == 0) {
MC = MR_INT8;
} else {
int32_t mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if (NC == 0) {
NC = NR_INT8;
} else {
int32_t nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
packedC_int32 = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC));
zero_int8 =
static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));
memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
int32_t mc, nc;
for (int32_t j = 0; j < n; j += NC) {
nc = s_min(n - j, NC);
PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, packedB_int8);
for (int32_t i = 0; i < m; i += MC) {
mc = s_min(m - i, MC);
PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, packedA_int8);
if (bias == nullptr) {
InnerKernel(mc, nc, alpha, packedA_int8, packedB_int8, beta,
packedC_int32, &C(i, j), ldc, relu);
} else {
if (addOnRow) {
InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
packedC_int32, &C(i, j), ldc, relu, bias + j,
addOnRow);
} else {
InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
packedC_int32, &C(i, j), ldc, relu, bias + i,
addOnRow);
}
}
}
}
paddle_mobile::memory::Free(packedA_int8);
paddle_mobile::memory::Free(packedB_int8);
paddle_mobile::memory::Free(packedC_int32);
paddle_mobile::memory::Free(zero_int8);
}
// 8 bits int matrix product (m*k x k*n), omp version
template <typename Otype>
void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
const int8_t *A, int32_t lda, const int8_t *B, int32_t ldb,
float beta, Otype *C, int32_t ldc, bool relu,
int32_t *bias, bool addOnRow) {
#ifdef _OPENMP
int32_t max_threads = omp_get_max_threads();
#else
int32_t max_threads = 1;
#endif
int32_t L1 = 64 / max_threads * 1024;
const int32_t k_complete = (k + 15) - ((k + 15) & 15);
KC = k_complete;
zero_int8 =
static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));
memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
if (m > n) {
// 对 A 分块
MC = L1 / (KC * sizeof(int8_t));
if (MC == 0) {
MC = MR_INT8;
} else {
int32_t mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
}
// 补齐 B
NC = (n + NR_INT8 - 1) / NR_INT8 * NR_INT8;
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
#if __aarch64__
// TODO()
#else
PackMatrixB_omp_2c_16(k, n, n % NR_INT8, B, ldb, packedB_int8);
#endif
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC * max_threads));
} else {
// 对 B 分块
NC = L1 / (KC * sizeof(int8_t));
if (NC == 0) {
NC = NR_INT8;
} else {
int32_t nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
}
// 补齐 A
MC = (m + MR_INT8 - 1) / MR_INT8 * MR_INT8;
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
#if __aarch64__
// TODO()
#else
PackMatrixA_omp_4r_16(m, k, m % MR_INT8, A, lda, packedA_int8);
#endif
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC * max_threads));
}
packedC_int32 = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC * max_threads));
if (m > n) {
#pragma omp parallel for
for (int32_t i = 0; i < m; i += MC) {
#ifdef _OPENMP
int32_t local_threads = omp_get_thread_num();
#else
int32_t local_threads = 0;
#endif
int32_t mc;
mc = s_min(m - i, MC);
int8_t *local_A = packedA_int8 + MC * KC * local_threads;
int32_t *local_C = packedC_int32 + MC * NC * local_threads;
#if __aarch64__
// TODO()
#else
PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, local_A);
#endif
if (bias == nullptr) {
InnerKernel(mc, n, alpha, local_A, packedB_int8, beta, local_C,
&C(i, 0), ldc, relu);
} else {
if (addOnRow) {
InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta,
local_C, &C(i, 0), ldc, relu, bias, addOnRow);
} else {
InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta,
local_C, &C(i, 0), ldc, relu, bias + i, addOnRow);
}
}
}
} else {
#pragma omp parallel for
for (int32_t j = 0; j < n; j += NC) {
#ifdef _OPENMP
int32_t local_threads = omp_get_thread_num();
#else
int32_t local_threads = 0;
#endif
int32_t nc;
nc = s_min(n - j, NC);
int8_t *local_B = packedB_int8 + KC * NC * local_threads;
int32_t *local_C = packedC_int32 + MC * NC * local_threads;
#if __aarch64__
// TODO()
#else
PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, local_B);
#endif
if (bias == nullptr) {
InnerKernel(m, nc, alpha, packedA_int8, local_B, beta, local_C,
&C(0, j), ldc, relu);
} else {
if (addOnRow) {
InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta,
local_C, &C(0, j), ldc, relu, bias + j, addOnRow);
} else {
InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta,
local_C, &C(0, j), ldc, relu, bias, addOnRow);
}
}
}
}
paddle_mobile::memory::Free(packedA_int8);
paddle_mobile::memory::Free(packedB_int8);
paddle_mobile::memory::Free(packedC_int32);
paddle_mobile::memory::Free(zero_int8);
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
此差异已折叠。
......@@ -27,130 +27,17 @@ namespace paddle_mobile {
namespace operators {
namespace math {
// 8 bits int matrix product (m*k x k*n)
void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, int8_t alpha,
const int8_t *A, int32_t lda, const int8_t *B, int32_t ldb,
int8_t beta, int32_t *C, int32_t ldc, bool relu,
int8_t *bias) {
#ifdef _OPENMP
int32_t max_threads = omp_get_max_threads();
#else
int32_t max_threads = 1;
#endif
int32_t L1 = 64 / max_threads * 1024;
KC = k;
zero_int8 =
static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * KC));
memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * KC);
if (m > n) {
// 对 A 分块
MC = L1 / (KC * sizeof(int8_t));
if (MC == 0) {
MC = MR_INT8;
} else {
int32_t mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
}
// 补齐 B
NC = (n + NR - 1) / NR * NR;
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_omp_8c(KC, n, n % NR, B, ldb, packedB_int8);
#endif
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC * max_threads));
} else {
// 对 B 分块
NC = L1 / (KC * sizeof(int8_t));
if (NC == 0) {
NC = NR;
} else {
int32_t nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR - 1) / NR * NR;
}
// 补齐 A
MC = (m + MR_INT8 - 1) / MR_INT8 * MR_INT8;
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_omp_4r(m, KC, m % MR_INT8, A, lda, packedA_int8);
#endif
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC * max_threads));
}
packedC_int8 = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC * max_threads));
if (m > n) {
#pragma omp parallel for
for (int32_t i = 0; i < m; i += MC) {
#ifdef _OPENMP
int32_t local_threads = omp_get_thread_num();
#else
int32_t local_threads = 0;
#endif
int32_t mc;
mc = s_min(m - i, MC);
int8_t *local_A = packedA_int8 + MC * KC * local_threads;
int32_t *local_C = packedC_int8 + MC * NC * local_threads;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixA_4r(mc, KC, mc % MR_INT8, &A(i, 0), lda, local_A);
#endif
InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta, local_C,
&C(i, 0), ldc, relu, bias + i);
}
} else {
#pragma omp parallel for
for (int32_t j = 0; j < n; j += NC) {
#ifdef _OPENMP
int32_t local_threads = omp_get_thread_num();
#else
int32_t local_threads = 0;
#endif
int32_t nc;
nc = s_min(n - j, NC);
int8_t *local_B = packedB_int8 + KC * NC * local_threads;
int32_t *local_C = packedC_int8 + MC * NC * local_threads;
#if __aarch64__
// TODO(wzzju)
#else
PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, local_B);
#endif
InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta, local_C,
&C(0, j), ldc, relu, bias);
}
}
paddle_mobile::memory::Free(packedA_int8);
paddle_mobile::memory::Free(packedB_int8);
paddle_mobile::memory::Free(packedC_int8);
paddle_mobile::memory::Free(zero_int8);
}
void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
const int8_t *B, int32_t ldb, int8_t *buffer) {
const int32_t j_length = n - n_tail;
#pragma omp parallel for
for (int32_t j = 0; j < j_length; j += NR) {
for (int32_t j = 0; j < j_length; j += 8) {
int8_t *local_buffer = buffer + j * k;
for (int32_t i = 0; i < k; ++i) {
const int8_t *b0 = &B(i, j);
#if __ARM_NEON
#if __aarch64__
// TODO(wzzju)
// TODO
#else
asm volatile(
// "pld [%[b0]] \n\t"
......@@ -179,7 +66,7 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
for (int32_t j = j_length; j < n; ++j) {
*local_buffer++ = *b0++;
}
for (int32_t j = n; j < j_length + NR; ++j) {
for (int32_t j = n; j < j_length + 8; ++j) {
*local_buffer++ = 0;
}
}
......@@ -188,9 +75,9 @@ void Gemm::PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail,
void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
const int8_t *A, int32_t lda, int8_t *buffer) {
const int i_length = m - m_tail;
const int32_t i_length = m - m_tail;
#pragma omp parallel for
for (int32_t i = 0; i < i_length; i += MR_INT8) {
for (int32_t i = 0; i < i_length; i += 4) {
const int8_t *a0 = A + i * lda;
const int8_t *a1 = A + (i + 1) * lda;
const int8_t *a2 = A + (i + 2) * lda;
......@@ -221,7 +108,7 @@ void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
default:
break;
}
for (int j = 0; j < k; ++j) {
for (int32_t j = 0; j < k; ++j) {
*local_buffer++ = *a0++;
*local_buffer++ = *a1++;
*local_buffer++ = *a2++;
......@@ -230,6 +117,232 @@ void Gemm::PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail,
}
}
// 8 bits int PackMatrixA_4r
void Gemm::PackMatrixA_omp_4r_16(int32_t m, int32_t k, int32_t m_tail,
const int8_t *A, int32_t lda, int8_t *buffer) {
const int32_t i_length = m - m_tail;
const int32_t k_count = k >> 4;
const int32_t k_tail = k & 15;
#pragma omp parallel for
for (int32_t i = 0; i < i_length; i += 4) {
const int8_t *a0 = A + i * lda;
const int8_t *a1 = A + (i + 1) * lda;
const int8_t *a2 = A + (i + 2) * lda;
const int8_t *a3 = A + (i + 3) * lda;
int8_t *local_buffer = buffer + i * KC;
for (int32_t j = 0; j < k_count; ++j) {
#if __ARM_NEON
#if __aarch64__
// TODO
#else
asm volatile(
"vld1.s8 {d0, d1}, [%[a0]]! \n\t"
"vld1.s8 {d2, d3}, [%[a1]]! \n\t"
"vld1.s8 {d4, d5}, [%[a2]]! \n\t"
"vld1.s8 {d6, d7}, [%[a3]]! \n\t"
"vst1.s8 {d0, d1}, [%[local_buffer]]! \n\t"
"vst1.s8 {d2, d3}, [%[local_buffer]]! \n\t"
"vst1.s8 {d4, d5}, [%[local_buffer]]! \n\t"
"vst1.s8 {d6, d7}, [%[local_buffer]]! \n\t"
: [local_buffer] "+r"(local_buffer), [a0] "+r"(a0), [a1] "+r"(a1),
[a2] "+r"(a2), [a3] "+r"(a3)
:
: "memory", "q0", "q1", "q2", "q3");
#endif // __aarch64__
#else
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a0++;
}
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a1++;
}
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a2++;
}
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a3++;
}
#endif // __ARM_NEON
}
if (k_tail != 0) {
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a0++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a1++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a2++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a3++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
}
}
if (m_tail != 0) {
const int8_t *a0 = &A(i_length, 0);
const int8_t *a1 = a0 + lda;
const int8_t *a2 = a0 + 2 * lda;
const int8_t *a3 = a0 + 3 * lda;
int8_t *local_buffer = buffer + i_length * KC;
switch (m_tail) {
case 1:
a1 = zero_int8;
case 2:
a2 = zero_int8;
case 3:
a3 = zero_int8;
break;
default:
break;
}
for (int32_t j = 0; j < k_count; ++j) {
#if __ARM_NEON
#if __aarch64__
// TODO
#else
asm volatile(
"vld1.s8 {d0, d1}, [%[a0]]! \n\t"
"vld1.s8 {d2, d3}, [%[a1]]! \n\t"
"vld1.s8 {d4, d5}, [%[a2]]! \n\t"
"vld1.s8 {d6, d7}, [%[a3]]! \n\t"
"vst1.s8 {d0, d1}, [%[local_buffer]]! \n\t"
"vst1.s8 {d2, d3}, [%[local_buffer]]! \n\t"
"vst1.s8 {d4, d5}, [%[local_buffer]]! \n\t"
"vst1.s8 {d6, d7}, [%[local_buffer]]! \n\t"
: [local_buffer] "+r"(local_buffer), [a0] "+r"(a0), [a1] "+r"(a1),
[a2] "+r"(a2), [a3] "+r"(a3)
:
: "memory", "q0", "q1", "q2", "q3");
#endif // __aarch64__
#else
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a0++;
}
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a1++;
}
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a2++;
}
for (int32_t l = 0; l < 16; ++l) {
*local_buffer++ = *a3++;
}
#endif // __ARM_NEON
}
if (k_tail != 0) {
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a0++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a1++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a2++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *a3++;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
}
}
}
// 8 bits int PackMatrixB
void Gemm::PackMatrixB_omp_2c_16(int32_t k, int32_t n, int32_t n_tail,
const int8_t *B, int32_t ldb, int8_t *buffer) {
const int32_t j_length = n - n_tail;
const int32_t k_count = k >> 4;
const int32_t k_tail = k & 15;
#pragma omp parallel for
for (int32_t j = 0; j < j_length; j += 2) {
int8_t *local_buffer = buffer + j * KC;
for (int32_t i = 0; i < k_count; ++i) {
const int8_t *b0 = &B((i << 4), j);
const int8_t *b1 = &B((i << 4), j + 1);
for (int m = 0; m < 16; ++m) {
*local_buffer++ = *b0;
b0 += ldb;
}
for (int m = 0; m < 16; ++m) {
*local_buffer++ = *b1;
b1 += ldb;
}
}
if (k_tail != 0) {
const int8_t *b0 = &B((k_count << 4), j);
const int8_t *b1 = &B((k_count << 4), j + 1);
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *b0;
b0 += ldb;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *b1;
b1 += ldb;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
}
}
if (n_tail != 0) {
int8_t *local_buffer = buffer + j_length * KC;
for (int32_t i = 0; i < k_count; ++i) {
const int8_t *b0 = &B((i << 4), j_length);
for (int m = 0; m < 16; ++m) {
*local_buffer++ = *b0;
b0 += ldb;
}
for (int m = 0; m < 16; ++m) {
*local_buffer++ = 0;
}
}
if (k_tail != 0) {
const int8_t *b0 = &B((k_count << 4), j_length);
for (int32_t j = k_count << 4; j < k; ++j) {
*local_buffer++ = *b0;
b0 += ldb;
}
for (int32_t j = k; j < KC; ++j) {
*local_buffer++ = 0;
}
for (int32_t j = k_count << 4; j < KC; ++j) {
*local_buffer++ = 0;
}
}
}
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -34,12 +34,12 @@ struct GRUUnitFunctor<CPU, T> {
gemm.Sgemm_omp(batch_size, frame_size * 2, frame_size, 1,
value.prev_out_value, frame_size, value.gate_weight,
frame_size * 2, 1, value.gate_value, frame_size * 3, false,
nullptr);
static_cast<float *>(nullptr));
#else
gemm.Sgemm(batch_size, frame_size * 2, frame_size, 1,
value.prev_out_value, frame_size, value.gate_weight,
frame_size * 2, 1, value.gate_value, frame_size * 3, false,
nullptr);
static_cast<float *>(nullptr));
#endif
}
......@@ -51,12 +51,12 @@ struct GRUUnitFunctor<CPU, T> {
gemm.Sgemm_omp(batch_size, frame_size, frame_size, 1,
value.reset_output_value, frame_size, value.state_weight,
frame_size, 1, value.gate_value + frame_size * 2,
frame_size * 3, false, nullptr);
frame_size * 3, false, static_cast<float *>(nullptr));
#else
gemm.Sgemm(batch_size, frame_size, frame_size, 1,
value.reset_output_value, frame_size, value.state_weight,
frame_size, 1, value.gate_value + frame_size * 2,
frame_size * 3, false, nullptr);
frame_size * 3, false, static_cast<float *>(nullptr));
#endif
}
......
......@@ -28,7 +28,13 @@ template <typename T>
void matmul(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b, T alpha,
framework::Tensor *matrix_out, T beta, bool relu = false,
T *bias = nullptr);
float *bias = nullptr);
template <typename T, typename S>
void matmul(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b, T alpha,
framework::Tensor *matrix_out, T beta, bool relu = false,
S *bias = nullptr, bool addOnRow = false);
template <typename T>
void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a,
......
......@@ -20,11 +20,12 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
namespace math {
template <>
void matmul<int8_t>(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
int8_t alpha, framework::Tensor *matrix_out, int8_t beta,
bool relu, int8_t *bias) {
void matmul(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b, float alpha,
framework::Tensor *matrix_out, float beta, bool relu, int32_t *bias,
bool addOnRow) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
......@@ -52,21 +53,43 @@ void matmul<int8_t>(const framework::Tensor &matrix_a, bool trans_a,
}
#ifdef _OPENMP
gemm.Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
if (bias != nullptr) {
gemm.Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int8_t>(), N, relu, bias, addOnRow);
} else {
gemm.Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias, addOnRow);
}
#else
gemm.Sgemm(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
if (bias != nullptr) {
gemm.Sgemm(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int8_t>(), N, relu, bias, addOnRow);
} else {
gemm.Sgemm(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias, addOnRow);
}
#endif
} else {
#ifdef _OPENMP
gemm.Sgemm_omp(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
if (bias != nullptr) {
gemm.Sgemm_omp(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int8_t>(), N, relu, bias, addOnRow);
} else {
gemm.Sgemm_omp(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias, addOnRow);
}
#else
gemm.Sgemm(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta, matrix_out->data<int32_t>(), N,
relu, bias);
if (bias != nullptr) {
gemm.Sgemm(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta, matrix_out->data<int8_t>(),
N, relu, bias, addOnRow);
} else {
gemm.Sgemm(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta, matrix_out->data<int32_t>(),
N, relu, bias, addOnRow);
}
#endif
}
}
......
......@@ -38,6 +38,7 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
const int input_width = static_cast<int>(input->dims()[3]);
const int output_height = static_cast<int>(output->dims()[2]);
const int output_width = static_cast<int>(output->dims()[3]);
output->mutable_data<float>();
const int hxw = input_height * input_width;
......@@ -472,7 +473,7 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
const int inputdata_channel_stride = h_in * w_in;
const int input_batch_stride = output_channels * inputdata_channel_stride;
const int output_batch_stride = output_channels * outputdata_channel_stride;
float *out_data = output->data<float>();
float *out_data = output->mutable_data<float>();
const float *input_data = input->data<float>();
for (int k = 0; k < batch_size; ++k) {
#pragma omp parallel for
......
......@@ -28,15 +28,21 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::vector;
void Pool3x3Avgs1p1(const Tensor *input, Tensor *output);
void Pool3x3Maxs1p1(const Tensor *input, Tensor *output);
void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
Tensor *output);
void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *in_x,
Tensor *out);
void Pool3x3Avgs1p1(const framework::Tensor *input, framework::Tensor *output);
void Pool3x3Maxs1p1(const framework::Tensor *input, framework::Tensor *output);
void Pool3x3Max(std::vector<int> strides, std::vector<int> paddings,
const framework::Tensor *input, framework::Tensor *output);
void Pool3x3Avg(std::vector<int> strides, std::vector<int> paddings,
const framework::Tensor *in_x, framework::Tensor *out);
void Pool3x3Maxs1_int8(const framework::Tensor *input,
framework::Tensor *output, int32_t pad_h, int32_t pad_w);
void Pool3x3Maxs2_int8(const framework::Tensor *input,
framework::Tensor *output, int32_t pad_h, int32_t pad_w);
void Pool3x3Max_int8(const std::vector<int> &strides,
const std::vector<int> &paddings,
const framework::Tensor *input, framework::Tensor *output);
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册