Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ca16f67b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca16f67b
编写于
12月 26, 2018
作者:
Z
zhaojiaying01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add depthwise_con3x3_add_relu fusion
上级
4769f4c9
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
157 addition
and
57 deletion
+157
-57
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+3
-3
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+3
-3
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+30
-1
src/operators/math/depthwise_conv3x3.cpp
src/operators/math/depthwise_conv3x3.cpp
+117
-46
src/operators/math/depthwise_conv3x3.h
src/operators/math/depthwise_conv3x3.h
+3
-3
tools/build.sh
tools/build.sh
+1
-1
未找到文件。
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
ca16f67b
...
@@ -77,15 +77,15 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> ¶m) {
...
@@ -77,15 +77,15 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> ¶m) {
break
;
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S1P1_FLOAT
:
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S1P1_FLOAT
:
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
nullptr
,
false
,
false
);
break
;
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P1_FLOAT
:
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P1_FLOAT
:
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
param
.
Output
(),
nullptr
,
false
,
false
);
break
;
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P0_FLOAT
:
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P0_FLOAT
:
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
nullptr
,
false
,
false
);
break
;
break
;
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
WinogradConv3x3
<
8
,
3
>
(
param
);
...
...
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
ca16f67b
...
@@ -122,7 +122,7 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
...
@@ -122,7 +122,7 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
);
param
.
Bias
(),
true
,
false
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
...
@@ -133,10 +133,10 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
...
@@ -133,10 +133,10 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
// param.Output(), false);
// param.Output(), false);
if
(
param
.
Paddings
()[
0
]
==
0
)
{
if
(
param
.
Paddings
()[
0
]
==
0
)
{
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
);
param
.
Bias
(),
true
,
false
);
}
else
{
}
else
{
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
);
param
.
Output
(),
param
.
Bias
(),
true
,
false
);
}
}
}
else
{
}
else
{
ConvAddBasic
(
param
);
ConvAddBasic
(
param
);
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
浏览文件 @
ca16f67b
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#ifdef FUSION_CONVADDRELU_OP
#pragma once
#pragma once
#include <operators/math/depthwise_conv3x3.h>
#include <vector>
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/conv_func.h"
#include "operators/math/im2col.h"
#include "operators/math/im2col.h"
...
@@ -26,7 +27,7 @@ namespace paddle_mobile {
...
@@ -26,7 +27,7 @@ namespace paddle_mobile {
namespace
operators
{
namespace
operators
{
template
<
typename
Itype
,
typename
Otype
>
template
<
typename
Itype
,
typename
Otype
>
void
ConvAddRelu
Compute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
void
ConvAddRelu
Basic
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
Tensor
bias
=
*
param
.
Bias
();
...
@@ -118,6 +119,34 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
...
@@ -118,6 +119,34 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
}
}
}
}
template
<
typename
Itype
,
typename
Otype
>
void
ConvAddReluCompute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
param
.
Output
()
->
mutable_data
<
float
>
();
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), param.Bias(),
// param.Output(), false);
if
(
param
.
Paddings
()[
0
]
==
0
)
{
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
}
else
{
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
,
true
);
}
}
else
{
ConvAddReluBasic
<
Itype
,
Otype
>
(
param
);
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/math/depthwise_conv3x3.cpp
浏览文件 @
ca16f67b
...
@@ -251,7 +251,7 @@ void DepthwiseConv3x3(const framework::Tensor *input,
...
@@ -251,7 +251,7 @@ void DepthwiseConv3x3(const framework::Tensor *input,
void
DepthwiseConv3x3s1p1
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConv3x3s1p1
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
)
{
bool
if_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
...
@@ -268,6 +268,15 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -268,6 +268,15 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
hxw
=
h
*
w
;
const
int
hxw
=
h
*
w
;
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
// leftTop, rightTop, leftBottom, rightBottom
int
lt
=
0
;
int
rt
=
w
-
1
;
int
lb
=
(
h
-
1
)
*
w
;
int
rb
=
h
*
w
-
1
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
const
float
*
filter_data_tmp
=
filter_data
;
...
@@ -287,39 +296,51 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -287,39 +296,51 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
float
w21
=
filter_data_tmp
[
7
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
float
w22
=
filter_data_tmp
[
8
];
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
output_data
[
lt
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
w
]
+
w22
*
input_data
[
w
+
1
];
w21
*
input_data
[
w
]
+
w22
*
input_data
[
w
+
1
];
output_data
[
w
-
1
]
=
w10
*
input_data
[
w
-
2
]
+
w11
*
input_data
[
w
-
1
]
+
output_data
[
rt
]
=
w10
*
input_data
[
w
-
2
]
+
w11
*
input_data
[
w
-
1
]
+
w20
*
input_data
[
2
*
w
-
2
]
+
w20
*
input_data
[
2
*
w
-
2
]
+
w21
*
input_data
[
2
*
w
-
1
];
w21
*
input_data
[
2
*
w
-
1
];
output_data
[
(
h
-
1
)
*
w
]
=
output_data
[
lb
]
=
w01
*
input_data
[(
h
-
2
)
*
w
]
+
w02
*
input_data
[(
h
-
2
)
*
w
+
1
]
+
w01
*
input_data
[(
h
-
2
)
*
w
]
+
w02
*
input_data
[(
h
-
2
)
*
w
+
1
]
+
w11
*
input_data
[(
h
-
1
)
*
w
]
+
w12
*
input_data
[(
h
-
1
)
*
w
+
1
];
w11
*
input_data
[(
h
-
1
)
*
w
]
+
w12
*
input_data
[(
h
-
1
)
*
w
+
1
];
output_data
[
h
*
w
-
1
]
=
output_data
[
rb
]
=
w00
*
input_data
[
h
*
w
-
w
-
2
]
+
w01
*
input_data
[
h
*
w
-
w
-
1
]
+
w00
*
input_data
[
h
*
w
-
w
-
2
]
+
w01
*
input_data
[
h
*
w
-
w
-
1
]
+
w10
*
input_data
[
h
*
w
-
2
]
+
w11
*
input_data
[
h
*
w
-
1
];
w10
*
input_data
[
h
*
w
-
2
]
+
w11
*
input_data
[
h
*
w
-
1
];
if
(
if_bias
)
{
if
(
if_bias
)
{
output_data
[
0
]
+=
bias_data
[
j
];
output_data
[
lt
]
+=
bias_data
[
j
];
output_data
[
w
-
1
]
+=
bias_data
[
j
];
output_data
[
rt
]
+=
bias_data
[
j
];
output_data
[(
h
-
1
)
*
w
]
+=
bias_data
[
j
];
output_data
[
lb
]
+=
bias_data
[
j
];
output_data
[
h
*
w
-
1
]
+=
bias_data
[
j
];
output_data
[
rb
]
+=
bias_data
[
j
];
}
if
(
if_relu
)
{
output_data
[
lt
]
=
output_data
[
lt
]
<
0
?
0
:
output_data
[
lt
];
output_data
[
rt
]
=
output_data
[
rt
]
<
0
?
0
:
output_data
[
rt
];
output_data
[
lb
]
=
output_data
[
lb
]
<
0
?
0
:
output_data
[
lb
];
output_data
[
rb
]
=
output_data
[
rb
]
<
0
?
0
:
output_data
[
rb
];
}
}
for
(
int
i
=
1
;
i
<
h
-
1
;
++
i
)
{
for
(
int
i
=
1
;
i
<
h
-
1
;
++
i
)
{
output_data
[
i
*
w
]
=
int
left
=
i
*
w
;
int
right
=
i
*
w
+
w
-
1
;
output_data
[
left
]
=
w01
*
input_data
[
i
*
w
-
w
]
+
w02
*
input_data
[
i
*
w
-
w
+
1
]
+
w01
*
input_data
[
i
*
w
-
w
]
+
w02
*
input_data
[
i
*
w
-
w
+
1
]
+
w11
*
input_data
[
i
*
w
]
+
w12
*
input_data
[
i
*
w
+
1
]
+
w11
*
input_data
[
i
*
w
]
+
w12
*
input_data
[
i
*
w
+
1
]
+
w21
*
input_data
[
i
*
w
+
w
]
+
w22
*
input_data
[
i
*
w
+
w
+
1
];
w21
*
input_data
[
i
*
w
+
w
]
+
w22
*
input_data
[
i
*
w
+
w
+
1
];
output_data
[
i
*
w
+
w
-
1
]
=
w00
*
input_data
[
i
*
w
+
w
-
1
-
w
-
1
]
+
output_data
[
right
]
=
w00
*
input_data
[
i
*
w
+
w
-
1
-
w
-
1
]
+
w01
*
input_data
[
i
*
w
+
w
-
1
-
w
]
+
w01
*
input_data
[
i
*
w
+
w
-
1
-
w
]
+
w10
*
input_data
[
i
*
w
+
w
-
1
-
1
]
+
w10
*
input_data
[
i
*
w
+
w
-
1
-
1
]
+
w11
*
input_data
[
i
*
w
+
w
-
1
]
+
w11
*
input_data
[
i
*
w
+
w
-
1
]
+
w20
*
input_data
[
i
*
w
+
w
-
1
+
w
-
1
]
+
w20
*
input_data
[
i
*
w
+
w
-
1
+
w
-
1
]
+
w21
*
input_data
[
i
*
w
+
w
-
1
+
w
];
w21
*
input_data
[
i
*
w
+
w
-
1
+
w
];
if
(
if_bias
)
{
if
(
if_bias
)
{
output_data
[
i
*
w
]
+=
bias_data
[
j
];
output_data
[
left
]
+=
bias_data
[
j
];
output_data
[
i
*
w
+
w
-
1
]
+=
bias_data
[
j
];
output_data
[
right
]
+=
bias_data
[
j
];
}
if
(
if_relu
)
{
output_data
[
left
]
=
output_data
[
left
]
<
0
?
0
:
output_data
[
left
];
output_data
[
right
]
=
output_data
[
right
]
<
0
?
0
:
output_data
[
right
];
}
}
}
}
...
@@ -352,7 +373,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -352,7 +373,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vaddq_f32
(
out0
,
vbias
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
vst1q_f32
(
output_ptr
,
out0
);
vst1q_f32
(
output_ptr
,
out0
);
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
...
@@ -370,7 +393,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -370,7 +393,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vaddq_f32
(
out0
,
vbias
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
vst1q_f32
(
output_ptr
+
(
h
-
1
)
*
w
,
out0
);
vst1q_f32
(
output_ptr
+
(
h
-
1
)
*
w
,
out0
);
// can optimize to each 8 stride.
// can optimize to each 8 stride.
...
@@ -399,6 +424,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -399,6 +424,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vaddq_f32
(
out0
,
vbias
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
if
(
i
==
0
)
{
...
@@ -428,6 +456,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -428,6 +456,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vaddq_f32
(
out0
,
vbias
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
if
(
i
==
0
)
{
...
@@ -471,6 +502,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -471,6 +502,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vaddq_f32
(
out0
,
vbias
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
vst1q_f32
(
output_ptr
,
out0
);
vst1q_f32
(
output_ptr
,
out0
);
...
@@ -502,6 +536,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
...
@@ -502,6 +536,9 @@ void DepthwiseConv3x3s1p1(const framework::Tensor *input,
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
out0
=
vaddq_f32
(
out0
,
vbias
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
if
(
i
==
0
)
{
...
@@ -1273,7 +1310,7 @@ void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
...
@@ -1273,7 +1310,7 @@ void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
void
DepthwiseConv3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConv3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
)
{
bool
if_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
...
@@ -1361,6 +1398,9 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1361,6 +1398,9 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vaddq_f32
(
res3
,
vbias
);
res3
=
vaddq_f32
(
res3
,
vbias
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_f32
(
output_row_ptr
,
res3
);
input_row_ptr
+=
6
;
input_row_ptr
+=
6
;
...
@@ -1395,6 +1435,9 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1395,6 +1435,9 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vaddq_f32
(
res3
,
vbias
);
res3
=
vaddq_f32
(
res3
,
vbias
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
if
((
w4
!=
w_times
))
{
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_f32
(
output_row_ptr
,
res3
);
...
@@ -1410,12 +1453,18 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1410,12 +1453,18 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
output_row_ptr
+=
3
;
output_row_ptr
+=
3
;
}
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
// leftTop, rightTop, leftBottom, rightBottom
input_const
[
in_w
]
*
w21
+
int
lt
=
0
;
input_const
[
in_w
+
1
]
*
w22
;
int
rt
=
out_w
-
1
;
int
lb
=
out_w
*
(
out_h
-
1
);
int
rb
=
out_h
*
out_w
-
1
;
output_data_tmp
[
lt
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_w
]
*
w21
+
input_const
[
in_w
+
1
]
*
w22
;
out2in_mid
=
(
out_w
-
1
)
*
2
;
out2in_mid
=
(
out_w
-
1
)
*
2
;
output_data_tmp
[
out_w
-
1
]
=
output_data_tmp
[
rt
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
...
@@ -1424,7 +1473,7 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1424,7 +1473,7 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
out2in_mid
=
(
out_h
-
1
)
*
2
*
in_w
;
out2in_mid
=
(
out_h
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_w
*
(
out_h
-
1
)
]
=
output_data_tmp
[
lb
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
...
@@ -1432,7 +1481,7 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1432,7 +1481,7 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_h
-
1
)
*
2
*
in_w
+
(
out_w
-
1
)
*
2
;
out2in_mid
=
(
out_h
-
1
)
*
2
*
in_w
+
(
out_w
-
1
)
*
2
;
output_data_tmp
[
out_h
*
out_w
-
1
]
=
output_data_tmp
[
rb
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
...
@@ -1443,22 +1492,30 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1443,22 +1492,30 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
(
1
-
if_pad_r
)
*
(
1
-
if_pad_b
)
*
w22
*
(
1
-
if_pad_r
)
*
(
1
-
if_pad_b
)
*
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
input_const
[
out2in_mid
+
in_w
+
1
];
if
(
if_bias
)
{
if
(
if_bias
)
{
output_data_tmp
[
0
]
+=
bias_data
[
j
];
output_data_tmp
[
lt
]
+=
bias_data
[
j
];
output_data_tmp
[
out_w
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
rt
]
+=
bias_data
[
j
];
output_data_tmp
[
out_w
*
(
out_h
-
1
)]
+=
bias_data
[
j
];
output_data_tmp
[
lb
]
+=
bias_data
[
j
];
output_data_tmp
[
out_h
*
out_w
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
rb
]
+=
bias_data
[
j
];
}
if
(
if_relu
)
{
output_data_tmp
[
lt
]
=
output_data_tmp
[
lt
]
<
0
?
0
:
output_data_tmp
[
lt
];
output_data_tmp
[
rt
]
=
output_data_tmp
[
rt
]
<
0
?
0
:
output_data_tmp
[
rt
];
output_data_tmp
[
lb
]
=
output_data_tmp
[
lb
]
<
0
?
0
:
output_data_tmp
[
lb
];
output_data_tmp
[
rb
]
=
output_data_tmp
[
rb
]
<
0
?
0
:
output_data_tmp
[
rb
];
}
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_w
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
int
left
=
i
*
out_w
;
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
output_data_tmp
[
left
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w11
*
input_const
[
out2in_mid
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_w
-
1
)
*
2
;
out2in_mid
=
i
*
2
*
in_w
+
(
out_w
-
1
)
*
2
;
output_data_tmp
[
i
*
out_w
+
out_w
-
1
]
=
int
right
=
i
*
out_w
+
out_w
-
1
;
output_data_tmp
[
right
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
...
@@ -1468,8 +1525,14 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
...
@@ -1468,8 +1525,14 @@ void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
w12
*
input_const
[
out2in_mid
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
if
(
if_bias
)
{
if
(
if_bias
)
{
output_data_tmp
[
i
*
out_w
]
+=
bias_data
[
j
];
output_data_tmp
[
left
]
+=
bias_data
[
j
];
output_data_tmp
[
i
*
out_w
+
out_w
-
1
]
+=
bias_data
[
j
];
output_data_tmp
[
right
]
+=
bias_data
[
j
];
}
if
(
if_relu
)
{
output_data_tmp
[
left
]
=
output_data_tmp
[
left
]
<
0
?
0
:
output_data_tmp
[
left
];
output_data_tmp
[
right
]
=
output_data_tmp
[
right
]
<
0
?
0
:
output_data_tmp
[
right
];
}
}
}
}
filter_data_tmp
+=
9
;
filter_data_tmp
+=
9
;
...
@@ -1909,7 +1972,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
...
@@ -1909,7 +1972,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
void
DepthwiseConv3x3s2p0
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConv3x3s2p0
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
)
{
bool
if_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
...
@@ -1977,6 +2040,9 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
...
@@ -1977,6 +2040,9 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
if
(
if_bias
)
{
if
(
if_bias
)
{
out0
=
vaddq_f32
(
out0
,
biasv
);
out0
=
vaddq_f32
(
out0
,
biasv
);
}
}
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
vst1q_lane_f32
(
output_ptr
,
out0
,
0
);
vst1q_lane_f32
(
output_ptr
,
out0
,
0
);
vst1q_lane_f32
(
output_ptr
+
1
,
out0
,
1
);
vst1q_lane_f32
(
output_ptr
+
1
,
out0
,
1
);
vst1q_lane_f32
(
output_ptr
+
2
,
out0
,
2
);
vst1q_lane_f32
(
output_ptr
+
2
,
out0
,
2
);
...
@@ -1985,7 +2051,8 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
...
@@ -1985,7 +2051,8 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
for
(
m
=
0
;
m
<
output_width
-
2
;
m
+=
3
)
{
for
(
m
=
0
;
m
<
output_width
-
2
;
m
+=
3
)
{
}
}
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
output_data
[
i
*
output_width
+
j
]
=
int
index
=
i
*
output_width
+
j
;
output_data
[
index
]
=
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
]
*
w00
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
]
*
w00
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
1
]
*
w01
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
1
]
*
w01
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
2
]
*
w02
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
2
]
*
w02
+
...
@@ -1996,7 +2063,11 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
...
@@ -1996,7 +2063,11 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
input_data
[(
2
*
i
+
2
)
*
input_width
+
2
*
j
+
1
]
*
w21
+
input_data
[(
2
*
i
+
2
)
*
input_width
+
2
*
j
+
1
]
*
w21
+
input_data
[(
2
*
i
+
2
)
*
input_width
+
2
*
j
+
2
]
*
w22
;
input_data
[(
2
*
i
+
2
)
*
input_width
+
2
*
j
+
2
]
*
w22
;
if
(
if_bias
)
{
if
(
if_bias
)
{
output_data
[
i
*
output_width
+
j
]
+=
*
bias_data
;
output_data
[
index
]
+=
*
bias_data
;
}
if
(
if_relu
)
{
output_data
[
index
]
=
output_data
[
index
]
<
0
?
0
:
output_data
[
index
];
}
}
}
}
}
}
...
...
src/operators/math/depthwise_conv3x3.h
浏览文件 @
ca16f67b
...
@@ -32,7 +32,7 @@ void DepthwiseConv3x3(const framework::Tensor *input,
...
@@ -32,7 +32,7 @@ void DepthwiseConv3x3(const framework::Tensor *input,
void
DepthwiseConv3x3s1p1
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConv3x3s1p1
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
);
bool
if_bias
,
bool
if_relu
);
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
...
@@ -51,7 +51,7 @@ void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
...
@@ -51,7 +51,7 @@ void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
void
DepthwiseConv3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConv3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
);
bool
if_bias
,
bool
if_relu
);
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
...
@@ -63,7 +63,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
...
@@ -63,7 +63,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
void
DepthwiseConv3x3s2p0
(
const
framework
::
Tensor
*
input
,
void
DepthwiseConv3x3s2p0
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
);
bool
if_bias
,
bool
if_relu
);
// TODO(hjchen2) need to be implemented
// TODO(hjchen2) need to be implemented
// template<typename Itype, typename Otype>
// template<typename Itype, typename Otype>
...
...
tools/build.sh
浏览文件 @
ca16f67b
...
@@ -162,7 +162,7 @@ build_for_ios() {
...
@@ -162,7 +162,7 @@ build_for_ios() {
fi
fi
cd
"
${
BUILD_DIR
}
"
cd
"
${
BUILD_DIR
}
"
make
-j
8
make
-j
8
cp
../../../src/ios_io/PaddleMobileCPU.h ./build/PaddleMobileCPU.h
cp
../../../src/io
/io
s_io/PaddleMobileCPU.h ./build/PaddleMobileCPU.h
cd
./build
cd
./build
# 生成符号表
# 生成符号表
ranlib
*
.a
ranlib
*
.a
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录